#region License Information /* HeuristicLab * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HEAL.Fossil; namespace HeuristicLab.Problems.DataAnalysis { /// /// Represents a clustering data analysis solution /// [StorableType("51241A39-F5C6-4DC8-A27A-83875FFCB51B")] public class ClusteringSolution : DataAnalysisSolution, IClusteringSolution { [StorableConstructor] protected ClusteringSolution(StorableConstructorFlag _) : base(_) { } protected ClusteringSolution(ClusteringSolution original, Cloner cloner) : base(original, cloner) { } public ClusteringSolution(IClusteringModel model, IClusteringProblemData problemData) : base(model, problemData) { } public override IDeepCloneable Clone(Cloner cloner) { return new ClusteringSolution(this, cloner); } protected override void RecalculateResults() { } #region IClusteringSolution Members public new IClusteringModel Model { get { return (IClusteringModel)base.Model; } set { base.Model = value; } } public new IClusteringProblemData ProblemData { get { return (IClusteringProblemData)base.ProblemData; } set { base.ProblemData = value; } } public virtual IEnumerable ClusterValues { get { return GetClusterValues(Enumerable.Range(0, ProblemData.Dataset.Rows)); } } public virtual IEnumerable TrainingClusterValues { get { return GetClusterValues(ProblemData.TrainingIndices); } } public virtual IEnumerable TestClusterValues { get { return GetClusterValues(ProblemData.TestIndices); } } public virtual IEnumerable GetClusterValues(IEnumerable rows) { return Model.GetClusterValues(ProblemData.Dataset, rows); } #endregion } }