#region License Information
/* HeuristicLab
* Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HEAL.Fossil;
namespace HeuristicLab.Problems.DataAnalysis {
///
/// Represents a clustering data analysis solution
///
[StorableType("51241A39-F5C6-4DC8-A27A-83875FFCB51B")]
public class ClusteringSolution : DataAnalysisSolution, IClusteringSolution {
[StorableConstructor]
protected ClusteringSolution(StorableConstructorFlag _) : base(_) { }
protected ClusteringSolution(ClusteringSolution original, Cloner cloner)
: base(original, cloner) {
}
public ClusteringSolution(IClusteringModel model, IClusteringProblemData problemData)
: base(model, problemData) {
}
public override IDeepCloneable Clone(Cloner cloner) {
return new ClusteringSolution(this, cloner);
}
protected override void RecalculateResults() {
}
#region IClusteringSolution Members
public new IClusteringModel Model {
get { return (IClusteringModel)base.Model; }
set { base.Model = value; }
}
public new IClusteringProblemData ProblemData {
get { return (IClusteringProblemData)base.ProblemData; }
set { base.ProblemData = value; }
}
public virtual IEnumerable ClusterValues {
get {
return GetClusterValues(Enumerable.Range(0, ProblemData.Dataset.Rows));
}
}
public virtual IEnumerable TrainingClusterValues {
get {
return GetClusterValues(ProblemData.TrainingIndices);
}
}
public virtual IEnumerable TestClusterValues {
get {
return GetClusterValues(ProblemData.TestIndices);
}
}
public virtual IEnumerable GetClusterValues(IEnumerable rows) {
return Model.GetClusterValues(ProblemData.Dataset, rows);
}
#endregion
}
}