#region License Information /* HeuristicLab * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Drawing; using System.Linq; using HeuristicLab.Data; using HeuristicLab.MainForm; using HeuristicLab.Optimization; namespace HeuristicLab.Problems.DataAnalysis.Views { [View("Residual Analysis")] [Content(typeof(IRegressionSolution))] public sealed partial class RegressionSolutionResidualAnalysisView : DataAnalysisSolutionEvaluationView { // names should be relatively save to prevent collisions with variable names in the dataset private const string TargetLabel = "> Target"; private const string PredictionLabel = "> Prediction"; private const string ResidualLabel = "> Residual"; private const string AbsResidualLabel = "> Residual (abs.)"; private const string RelativeErrorLabel = "> Relative Error"; private const string AbsRelativeErrorLabel = "> Relative Error (abs.)"; private const string PartitionLabel = "> Partition"; public new IRegressionSolution Content { get { return (IRegressionSolution)base.Content; } set { base.Content = value; } } public RegressionSolutionResidualAnalysisView() : base() { InitializeComponent(); } #region events protected override void RegisterContentEvents() { base.RegisterContentEvents(); Content.ModelChanged += new EventHandler(Content_ModelChanged); Content.ProblemDataChanged += new EventHandler(Content_ProblemDataChanged); } protected override void DeregisterContentEvents() { base.DeregisterContentEvents(); Content.ModelChanged -= new EventHandler(Content_ModelChanged); Content.ProblemDataChanged -= new EventHandler(Content_ProblemDataChanged); } private void Content_ProblemDataChanged(object sender, EventArgs e) { OnContentChanged(); } private void Content_ModelChanged(object sender, EventArgs e) { OnContentChanged(); } protected override void OnContentChanged() { base.OnContentChanged(); if (Content == null) { bubbleChartView.Content = null; } else { UpdateBubbleChart(); } } private void UpdateBubbleChart() { if (Content == null) return; var selectedXAxis = bubbleChartView.SelectedXAxis; var selectedYAxis = bubbleChartView.SelectedYAxis; var problemData = Content.ProblemData; var ds = problemData.Dataset; var runs = new RunCollection(); // determine relevant variables (at least two different values) var doubleVars = ds.DoubleVariables.Where(vn => ds.GetDoubleValues(vn).Distinct().Skip(1).Any()).ToArray(); var stringVars = ds.StringVariables.Where(vn => ds.GetStringValues(vn).Distinct().Skip(1).Any()).ToArray(); var dateTimeVars = ds.DateTimeVariables.Where(vn => ds.GetDateTimeValues(vn).Distinct().Skip(1).Any()).ToArray(); // produce training and test values separately as they might overlap (e.g. for ensembles) var predictedValuesTrain = Content.EstimatedTrainingValues.ToArray(); int j = 0; // idx for predictedValues array foreach (var i in problemData.TrainingIndices) { var run = CreateRunForIdx(i, problemData, doubleVars, stringVars, dateTimeVars); var targetValue = ds.GetDoubleValue(problemData.TargetVariable, i); AddErrors(run, predictedValuesTrain[j++], targetValue); run.Results.Add(PartitionLabel, new StringValue("Training")); run.Color = Color.Gold; runs.Add(run); } var predictedValuesTest = Content.EstimatedTestValues.ToArray(); j = 0; foreach (var i in problemData.TestIndices) { var run = CreateRunForIdx(i, problemData, doubleVars, stringVars, dateTimeVars); var targetValue = ds.GetDoubleValue(problemData.TargetVariable, i); AddErrors(run, predictedValuesTest[j++], targetValue); run.Results.Add(PartitionLabel, new StringValue("Test")); run.Color = Color.Red; runs.Add(run); } if (string.IsNullOrEmpty(selectedXAxis)) selectedXAxis = "Index"; if (string.IsNullOrEmpty(selectedYAxis)) selectedYAxis = "Residual"; bubbleChartView.Content = runs; bubbleChartView.SelectedXAxis = selectedXAxis; bubbleChartView.SelectedYAxis = selectedYAxis; } private void AddErrors(IRun run, double pred, double target) { var residual = target - pred; var relError = residual / target; run.Results.Add(TargetLabel, new DoubleValue(target)); run.Results.Add(PredictionLabel, new DoubleValue(pred)); run.Results.Add(ResidualLabel, new DoubleValue(residual)); run.Results.Add(AbsResidualLabel, new DoubleValue(Math.Abs(residual))); run.Results.Add(RelativeErrorLabel, new DoubleValue(relError)); run.Results.Add(AbsRelativeErrorLabel, new DoubleValue(Math.Abs(relError))); } private IRun CreateRunForIdx(int i, IRegressionProblemData problemData, IEnumerable doubleVars, IEnumerable stringVars, IEnumerable dateTimeVars) { var ds = problemData.Dataset; var run = new Run(); foreach (var variableName in doubleVars) { run.Results.Add(variableName, new DoubleValue(ds.GetDoubleValue(variableName, i))); } foreach (var variableName in stringVars) { run.Results.Add(variableName, new StringValue(ds.GetStringValue(variableName, i))); } foreach (var variableName in dateTimeVars) { run.Results.Add(variableName, new DateTimeValue(ds.GetDateTimeValue(variableName, i))); } return run; } #endregion } }