#region License Information /* HeuristicLab * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HEAL.Fossil; using HeuristicLab.Random; namespace HeuristicLab.Problems.DataAnalysis.Symbolic { [StorableType("247DBD04-18F2-4184-B6F5-6E283BF06FD0")] public sealed class ConstantTreeNode : SymbolicExpressionTreeTerminalNode { public new Constant Symbol { get { return (Constant)base.Symbol; } } private double constantValue; [Storable] public double Value { get { return constantValue; } set { constantValue = value; } } [StorableConstructor] private ConstantTreeNode(StorableConstructorFlag _) : base(_) { } private ConstantTreeNode(ConstantTreeNode original, Cloner cloner) : base(original, cloner) { constantValue = original.constantValue; } private ConstantTreeNode() : base() { } public ConstantTreeNode(Constant constantSymbol) : base(constantSymbol) { } public override bool HasLocalParameters { get { return true; } } public override void ResetLocalParameters(IRandom random) { base.ResetLocalParameters(random); var range = Symbol.MaxValue - Symbol.MinValue; Value = random.NextDouble() * range + Symbol.MinValue; } public override void ShakeLocalParameters(IRandom random, double shakingFactor) { base.ShakeLocalParameters(random, shakingFactor); // 50% additive & 50% multiplicative if (random.NextDouble() < 0.5) { double x = NormalDistributedRandom.NextDouble(random, Symbol.ManipulatorMu, Symbol.ManipulatorSigma); Value = Value + x * shakingFactor; } else { double x = NormalDistributedRandom.NextDouble(random, 1.0, Symbol.MultiplicativeManipulatorSigma); Value = Value * x; } } public override IDeepCloneable Clone(Cloner cloner) { return new ConstantTreeNode(this, cloner); } public override string ToString() { return constantValue.ToString("E4"); } } }