#region License Information
/* HeuristicLab
* Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HEAL.Fossil;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
///
/// An operator that collects the training Pareto-best symbolic regression solutions for single objective symbolic regression problems.
///
[Item("SymbolicRegressionSingleObjectiveTrainingParetoBestSolutionAnalyzer", "An operator that collects the training Pareto-best symbolic regression solutions for single objective symbolic regression problems.")]
[StorableType("8FDF5528-8E95-44D6-AFFD-433B4AA55559")]
public sealed class SymbolicRegressionSingleObjectiveTrainingParetoBestSolutionAnalyzer : SymbolicDataAnalysisSingleObjectiveTrainingParetoBestSolutionAnalyzer {
[StorableConstructor]
private SymbolicRegressionSingleObjectiveTrainingParetoBestSolutionAnalyzer(StorableConstructorFlag _) : base(_) { }
private SymbolicRegressionSingleObjectiveTrainingParetoBestSolutionAnalyzer(SymbolicRegressionSingleObjectiveTrainingParetoBestSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
public SymbolicRegressionSingleObjectiveTrainingParetoBestSolutionAnalyzer() : base() { }
public override IDeepCloneable Clone(Cloner cloner) {
return new SymbolicRegressionSingleObjectiveTrainingParetoBestSolutionAnalyzer(this, cloner);
}
protected override ISymbolicRegressionSolution CreateSolution(ISymbolicExpressionTree bestTree) {
var model = new SymbolicRegressionModel(ProblemDataParameter.ActualValue.TargetVariable, (ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);
if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(ProblemDataParameter.ActualValue);
return new SymbolicRegressionSolution(model, (IRegressionProblemData)ProblemDataParameter.ActualValue.Clone());
}
}
}