#region License Information
/* HeuristicLab
* Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Problems.DataAnalysis;
namespace HeuristicLab.DataPreprocessing {
public class ProblemDataCreator {
private readonly PreprocessingContext context;
private Dataset ExportedDataset {
get { return context.Data.ExportToDataset(); }
}
private IList Transformations {
get { return context.Data.Transformations; }
}
public ProblemDataCreator(PreprocessingContext context) {
this.context = context;
}
public IDataAnalysisProblemData CreateProblemData(IDataAnalysisProblemData oldProblemData) {
if (context.Data.Rows == 0 || context.Data.Columns == 0) return null;
IDataAnalysisProblemData problemData;
if (oldProblemData is TimeSeriesPrognosisProblemData) {
problemData = CreateTimeSeriesPrognosisData((TimeSeriesPrognosisProblemData)oldProblemData);
} else if (oldProblemData is RegressionProblemData) {
problemData = CreateRegressionData((RegressionProblemData)oldProblemData);
} else if (oldProblemData is ClassificationProblemData) {
problemData = CreateClassificationData((ClassificationProblemData)oldProblemData);
} else if (oldProblemData is ClusteringProblemData) {
problemData = CreateClusteringData((ClusteringProblemData)oldProblemData);
} else {
throw new NotImplementedException("The type of the DataAnalysisProblemData is not supported.");
}
SetTrainingAndTestPartition(problemData);
// set the input variables to the correct checked state
var inputVariables = oldProblemData.InputVariables.ToDictionary(x => x.Value, x => x);
foreach (var variable in problemData.InputVariables) {
bool isChecked = inputVariables.ContainsKey(variable.Value) && oldProblemData.InputVariables.ItemChecked(inputVariables[variable.Value]);
problemData.InputVariables.SetItemCheckedState(variable, isChecked);
}
return problemData;
}
private IDataAnalysisProblemData CreateTimeSeriesPrognosisData(TimeSeriesPrognosisProblemData oldProblemData) {
var targetVariable = oldProblemData.TargetVariable;
if (!context.Data.VariableNames.Contains(targetVariable))
targetVariable = context.Data.VariableNames.First();
var inputVariables = GetDoubleInputVariables(targetVariable);
var newProblemData = new TimeSeriesPrognosisProblemData(ExportedDataset, inputVariables, targetVariable, Transformations) {
TrainingHorizon = oldProblemData.TrainingHorizon,
TestHorizon = oldProblemData.TestHorizon
};
return newProblemData;
}
private IDataAnalysisProblemData CreateRegressionData(RegressionProblemData oldProblemData) {
var targetVariable = oldProblemData.TargetVariable;
if (!context.Data.VariableNames.Contains(targetVariable))
targetVariable = context.Data.VariableNames.First();
var inputVariables = GetDoubleInputVariables(targetVariable);
var newProblemData = new RegressionProblemData(ExportedDataset, inputVariables, targetVariable, Transformations);
return newProblemData;
}
private IDataAnalysisProblemData CreateClassificationData(ClassificationProblemData oldProblemData) {
var targetVariable = oldProblemData.TargetVariable;
if (!context.Data.VariableNames.Contains(targetVariable))
targetVariable = context.Data.VariableNames.First();
var inputVariables = GetDoubleInputVariables(targetVariable);
var newProblemData = new ClassificationProblemData(ExportedDataset, inputVariables, targetVariable, Transformations) {
PositiveClass = oldProblemData.PositiveClass
};
return newProblemData;
}
private IDataAnalysisProblemData CreateClusteringData(ClusteringProblemData oldProblemData) {
return new ClusteringProblemData(ExportedDataset, GetDoubleInputVariables(String.Empty), Transformations);
}
private void SetTrainingAndTestPartition(IDataAnalysisProblemData problemData) {
var ppData = context.Data;
problemData.TrainingPartition.Start = ppData.TrainingPartition.Start;
problemData.TrainingPartition.End = ppData.TrainingPartition.End;
problemData.TestPartition.Start = ppData.TestPartition.Start;
problemData.TestPartition.End = ppData.TestPartition.End;
}
private IEnumerable GetDoubleInputVariables(string targetVariable) {
var variableNames = new List();
for (int i = 0; i < context.Data.Columns; ++i) {
var variableName = context.Data.GetVariableName(i);
if (context.Data.VariableHasType(i)
&& variableName != targetVariable
&& IsNotConstantInputVariable(context.Data.GetValues(i))) {
variableNames.Add(variableName);
}
}
return variableNames;
}
private bool IsNotConstantInputVariable(IList list) {
return context.Data.TrainingPartition.End - context.Data.TrainingPartition.Start > 1 || list.Range() > 0;
}
}
}