1 | #region License Information |
---|
2 | /* HeuristicLab |
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL) |
---|
4 | * |
---|
5 | * This file is part of HeuristicLab. |
---|
6 | * |
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify |
---|
8 | * it under the terms of the GNU General Public License as published by |
---|
9 | * the Free Software Foundation, either version 3 of the License, or |
---|
10 | * (at your option) any later version. |
---|
11 | * |
---|
12 | * HeuristicLab is distributed in the hope that it will be useful, |
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
15 | * GNU General Public License for more details. |
---|
16 | * |
---|
17 | * You should have received a copy of the GNU General Public License |
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>. |
---|
19 | */ |
---|
20 | #endregion |
---|
21 | |
---|
22 | using System; |
---|
23 | using System.Collections.Generic; |
---|
24 | using System.Drawing; |
---|
25 | using System.Linq; |
---|
26 | using HeuristicLab.Common; |
---|
27 | using HeuristicLab.Core; |
---|
28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; |
---|
29 | using HeuristicLab.Problems.DataAnalysis; |
---|
30 | using HeuristicLab.Optimization; |
---|
31 | using HeuristicLab.Data; |
---|
32 | |
---|
33 | namespace HeuristicLab.Algorithms.DataAnalysis { |
---|
34 | /// <summary> |
---|
35 | /// Represents a k-Means clustering solution for a clustering problem which can be visualized in the GUI. |
---|
36 | /// </summary> |
---|
37 | [Item("k-Means clustering solution", "Represents a k-Means solution for a clustering problem which can be visualized in the GUI.")] |
---|
38 | [StorableClass] |
---|
39 | public sealed class KMeansClusteringSolution : ClusteringSolution { |
---|
40 | private const string TrainingIntraClusterSumOfSquaresResultName = "Intra-cluster sum of squares (training)"; |
---|
41 | private const string TestIntraClusterSumOfSquaresResultName = "Intra-cluster sum of squares (test)"; |
---|
42 | public new KMeansClusteringModel Model { |
---|
43 | get { return (KMeansClusteringModel)base.Model; } |
---|
44 | set { base.Model = value; } |
---|
45 | } |
---|
46 | |
---|
47 | [StorableConstructor] |
---|
48 | private KMeansClusteringSolution(bool deserializing) : base(deserializing) { } |
---|
49 | private KMeansClusteringSolution(KMeansClusteringSolution original, Cloner cloner) |
---|
50 | : base(original, cloner) { |
---|
51 | } |
---|
52 | public KMeansClusteringSolution(KMeansClusteringModel model, IClusteringProblemData problemData) |
---|
53 | : base(model, problemData) { |
---|
54 | double trainingIntraClusterSumOfSquares = KMeansClusteringUtil.CalculateIntraClusterSumOfSquares(model, problemData.Dataset, problemData.TrainingIndices); |
---|
55 | double testIntraClusterSumOfSquares = KMeansClusteringUtil.CalculateIntraClusterSumOfSquares(model, problemData.Dataset, problemData.TestIndices); |
---|
56 | this.Add(new Result(TrainingIntraClusterSumOfSquaresResultName, "The sum of squared distances of points of the training partition to the cluster center (is minimized by k-Means).", new DoubleValue(trainingIntraClusterSumOfSquares))); |
---|
57 | this.Add(new Result(TestIntraClusterSumOfSquaresResultName, "The sum of squared distances of points of the test partition to the cluster center (is minimized by k-Means).", new DoubleValue(testIntraClusterSumOfSquares))); |
---|
58 | } |
---|
59 | |
---|
60 | public override IDeepCloneable Clone(Cloner cloner) { |
---|
61 | return new KMeansClusteringSolution(this, cloner); |
---|
62 | } |
---|
63 | } |
---|
64 | } |
---|