#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using HeuristicLab.Analysis;
using HeuristicLab.Analysis.QualityAnalysis;
using HeuristicLab.Analysis.SelfOrganizingMaps;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.MainForm;
using HeuristicLab.Optimization;
using HeuristicLab.OptimizationExpertSystem.Common;
using HeuristicLab.Random;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Windows.Forms;
using System.Windows.Forms.DataVisualization.Charting;
namespace HeuristicLab.OptimizationExpertSystem {
[View("Understanding Solutions")]
[Content(typeof(KnowledgeCenter), IsDefaultView = false)]
public partial class UnderstandingSolutionsView : KnowledgeCenterViewBase {
protected virtual bool SuppressEvents { get; set; }
public UnderstandingSolutionsView() {
InitializeComponent();
solutionNetworkProjectionComboBox.SelectedIndex = 0;
}
protected override void OnContentChanged() {
base.OnContentChanged();
UpdateSimilarityCalculators();
UpdateNamesComboboxes();
UpdateSolutionVisualization();
}
#region Update Controls
private void UpdateSimilarityCalculators() {
var selected = (ISolutionSimilarityCalculator)(similarityComboBox.SelectedIndex >= 0 ? similarityComboBox.SelectedItem : null);
similarityComboBox.Items.Clear();
if (Content == null || Content.Problem == null) return;
foreach (var calc in Content.Problem.Operators.OfType()) {
similarityComboBox.Items.Add(calc);
if (selected != null && calc.ItemName == selected.ItemName) similarityComboBox.SelectedItem = calc;
}
if (selected == null && similarityComboBox.Items.Count > 0)
similarityComboBox.SelectedIndex = 0;
}
private void UpdateNamesComboboxes() {
var selectedSolutionName = solutionNameComboBox.SelectedIndex >= 0 ? (string)solutionNameComboBox.SelectedItem : string.Empty;
solutionNameComboBox.Items.Clear();
if (Content == null) return;
var solutionNames = Content.Problem.Solutions.Select(x => x.Solution).OfType().SelectMany(x => x.Variables);
foreach (var sn in solutionNames.GroupBy(x => x.Name).OrderBy(x => x.Key)) {
solutionNameComboBox.Items.Add(sn.Key);
// either it was previously selected, or the variable value is defined in the HeuristicLab.Encodings sub-namespace
if (sn.Key == selectedSolutionName || (string.IsNullOrEmpty(selectedSolutionName) && sn.All(x => x.Value != null && x.Value.GetType().FullName.StartsWith("HeuristicLab.Encodings."))))
solutionNameComboBox.SelectedItem = sn.Key;
}
}
public void UpdateSolutionVisualization() {
if (InvokeRequired) { Invoke((Action)UpdateSolutionVisualization); return; }
var qualityName = Content.Problem.Problem.Evaluator.QualityParameter.ActualName;
UpdateSolutionQualityAnalysis(qualityName);
if (similarityComboBox.SelectedIndex >= 0) {
var calculator = (ISolutionSimilarityCalculator)similarityComboBox.SelectedItem;
UpdateSolutionDiversityAnalysis(calculator);
UpdateSolutionFdcAnalysis(calculator, fdcBetweenBestCheckBox.Checked);
UpdateSolutionLengthScaleAnalysis(calculator);
UpdateSolutionNetworkAnalysis(calculator, (string)solutionNetworkProjectionComboBox.SelectedItem, linesCheckBox.Checked, contrastTrackBar.Value, minimumTrackBar.Value);
} else {
solutionsDiversityViewHost.Content = null;
solutionsFdcViewHost.Content = null;
solutionsLengthScaleViewHost.Content = null;
solutionsNetworkChart.Series.First().Points.Clear();
}
}
private void UpdateSolutionQualityAnalysis(string qualityName) {
var dt = solutionsQualityViewHost.Content as DataTable;
if (dt == null) {
dt = QualityDistributionAnalyzer.PrepareTable(qualityName);
dt.VisualProperties.Title = "Quality Distribution";
solutionsQualityViewHost.Content = dt;
}
QualityDistributionAnalyzer.UpdateTable(dt, GetSolutionScopes().Select(x => GetQuality(x, qualityName) ?? double.NaN).Where(x => !double.IsNaN(x)));
}
private void UpdateSolutionDiversityAnalysis(ISolutionSimilarityCalculator calculator) {
try {
solutionsDiversityViewHost.Content = null;
var solutionScopes = GetSolutionScopes();
var similarities = new double[solutionScopes.Count, solutionScopes.Count];
for (var i = 0; i < solutionScopes.Count; i++) {
for (var j = 0; j < solutionScopes.Count; j++)
similarities[i, j] = calculator.CalculateSolutionSimilarity(solutionScopes[i], solutionScopes[j]);
}
var hm = new HeatMap(similarities, "Solution Similarities", 0.0, 1.0);
solutionsDiversityViewHost.Content = hm;
} catch { }
}
private void UpdateSolutionFdcAnalysis(ISolutionSimilarityCalculator calculator, bool distanceToBest) {
try {
solutionsFdcViewHost.Content = null;
fdcSpearmanLabel.Text = "-";
fdcPearsonLabel.Text = "-";
var solutionScopes = GetSolutionScopes();
var points = new List>();
if (distanceToBest) {
var maximization = ((IValueParameter)Content.Problem.MaximizationParameter).Value.Value;
var bestSolutions = (maximization ? solutionScopes.MaxItems(x => GetQuality(x, calculator.QualityVariableName) ?? double.NegativeInfinity)
: solutionScopes.MinItems(x => GetQuality(x, calculator.QualityVariableName) ?? double.PositiveInfinity)).ToList();
foreach (var solScope in solutionScopes.Except(bestSolutions)) {
var maxSimilarity = bestSolutions.Max(x => calculator.CalculateSolutionSimilarity(solScope, x));
var qDiff = (GetQuality(solScope, calculator.QualityVariableName) ?? double.NaN)
- (GetQuality(bestSolutions[0], calculator.QualityVariableName) ?? double.NaN);
points.Add(new Point2D(Math.Abs(qDiff), 1.0 - maxSimilarity));
}
} else {
for (int i = 0; i < solutionScopes.Count; i++) {
for (int j = 0; j < solutionScopes.Count; j++) {
if (i == j) continue;
var qDiff = (GetQuality(solutionScopes[i], calculator.QualityVariableName) ?? double.NaN)
- (GetQuality(solutionScopes[j], calculator.QualityVariableName) ?? double.NaN);
if (double.IsNaN(qDiff)) continue;
points.Add(new Point2D(Math.Abs(qDiff), 1.0 - calculator.CalculateSolutionSimilarity(solutionScopes[i], solutionScopes[j])));
}
}
}
var xs = points.Select(p => p.X).ToArray();
var ys = points.Select(p => p.Y).ToArray();
var scorr = alglib.spearmancorr2(xs, ys);
var pcorr = alglib.pearsoncorr2(xs, ys);
pcorr = pcorr * pcorr;
fdcSpearmanLabel.Text = scorr.ToString("F2");
fdcPearsonLabel.Text = pcorr.ToString("F2");
var splot = new ScatterPlot("Fitness-Distance", "");
splot.VisualProperties.XAxisTitle = "Absolute Fitness Difference";
splot.VisualProperties.XAxisMinimumAuto = false;
splot.VisualProperties.XAxisMinimumFixedValue = 0.0;
splot.VisualProperties.YAxisTitle = "Solution Distance";
splot.VisualProperties.YAxisMinimumAuto = false;
splot.VisualProperties.YAxisMinimumFixedValue = 0.0;
splot.VisualProperties.YAxisMaximumAuto = false;
splot.VisualProperties.YAxisMaximumFixedValue = 1.0;
var row = new ScatterPlotDataRow("Fdc", "", points);
row.VisualProperties.PointSize = 10;
row.VisualProperties.RegressionType = ScatterPlotDataRowVisualProperties.ScatterPlotDataRowRegressionType.Linear;
splot.Rows.Add(row);
solutionsFdcViewHost.Content = splot;
} catch { }
}
private void UpdateSolutionLengthScaleAnalysis(ISolutionSimilarityCalculator calculator) {
try {
solutionsLengthScaleViewHost.Content = null;
var dt = solutionsLengthScaleViewHost.Content as DataTable;
if (dt == null) {
dt = QualityDistributionAnalyzer.PrepareTable("Length Scale");
solutionsLengthScaleViewHost.Content = dt;
}
QualityDistributionAnalyzer.UpdateTable(dt, CalculateLengthScale(calculator));
} catch {
solutionsLengthScaleViewHost.Content = null;
}
}
private IEnumerable CalculateLengthScale(ISolutionSimilarityCalculator calculator) {
var solutionScopes = GetSolutionScopes();
for (var i = 0; i < solutionScopes.Count; i++) {
for (var j = 0; j < solutionScopes.Count; j++) {
if (i == j) continue;
var sim = calculator.CalculateSolutionSimilarity(solutionScopes[i], solutionScopes[j]);
if (sim.IsAlmost(0)) continue;
var qDiff = (GetQuality(solutionScopes[i], calculator.QualityVariableName) ?? double.NaN)
- (GetQuality(solutionScopes[j], calculator.QualityVariableName) ?? double.NaN);
if (!double.IsNaN(qDiff)) yield return Math.Abs(qDiff) / sim;
}
}
}
private void UpdateSolutionNetworkAnalysis(ISolutionSimilarityCalculator calculator, string projection, bool lines, double contrast, double minimum) {
var series = solutionsNetworkChart.Series["SolutionSeries"];
var seedingSeries = solutionsNetworkChart.Series["SeedingSolutionSeries"];
try {
solutionsNetworkChart.Annotations.Clear();
series.Points.Clear();
seedingSeries.Points.Clear();
var solutionScopes = GetSolutionScopes();
var dissimilarities = new DoubleMatrix(solutionScopes.Count, solutionScopes.Count);
for (var i = 0; i < solutionScopes.Count; i++) {
for (var j = 0; j < solutionScopes.Count; j++) {
if (i == j) continue;
dissimilarities[i, j] = 1.0 - calculator.CalculateSolutionSimilarity(solutionScopes[i], solutionScopes[j]);
}
}
DoubleMatrix coords = null;
if (projection == "SOM")
coords = RelationalSOM.Map(dissimilarities, new MersenneTwister(42), jittering: true);
else coords = MultidimensionalScaling.KruskalShepard(dissimilarities);
var dataPoints = new List();
for (var i = 0; i < coords.Rows; i++) {
var quality = GetQuality(solutionScopes[i], calculator.QualityVariableName) ?? double.NaN;
var dataPoint = new DataPoint() {
Name = (i + 1).ToString(),
XValue = coords[i, 0],
YValues = new[] {coords[i, 1], quality},
Label = (i + 1) + ": " + quality,
Tag = solutionScopes[i]
};
dataPoints.Add(dataPoint);
if (Content.SolutionSeedingPool.Contains(solutionScopes[i]) && Content.SolutionSeedingPool.ItemChecked(solutionScopes[i]))
seedingSeries.Points.Add(dataPoint);
else series.Points.Add(dataPoint);
}
if (lines) {
for (var i = 0; i < dataPoints.Count - 1; i++) {
for (var j = i + 1; j < dataPoints.Count; j++) {
if (dissimilarities[i, j].IsAlmost(1.0)) continue;
// s-shaped curve for mapping dissimilarities to alpha values
var alpha = (int)Math.Round(255.0 / (1.0 + Math.Exp(-contrast * ((1.0 - dissimilarities[i, j]) - (minimum / 100.0)))));
var lw = (int)Math.Round((1 - dissimilarities[i, j]) * 3.0 + 1.0); // linewidth of 1 to 4
var an = new LineAnnotation();
an.SetAnchor(dataPoints[i], dataPoints[j]);
an.LineColor = Color.FromArgb(alpha, Color.DarkGray);
an.LineWidth = lw;
solutionsNetworkChart.Annotations.Add(an);
}
}
}
} catch {
// problems in calculating the similarity
series.Points.Clear();
seedingSeries.Points.Clear();
}
}
#endregion
#region Content Event Handlers
protected override void OnProblemChanged() {
base.OnProblemInstancesChanged();
UpdateSimilarityCalculators();
UpdateNamesComboboxes();
UpdateSolutionVisualization();
}
protected override void OnProblemSolutionsChanged() {
base.OnProblemSolutionsChanged();
UpdateNamesComboboxes();
UpdateSolutionVisualization();
}
protected override void OnSolutionSeedingPoolChanged() {
base.OnSolutionSeedingPoolChanged();
UpdateSolutionNetworkAnalysis(similarityComboBox.SelectedItem as ISolutionSimilarityCalculator, (string)solutionNetworkProjectionComboBox.SelectedItem, linesCheckBox.Checked, contrastTrackBar.Value, minimumTrackBar.Value);
}
#endregion
#region Control Event Handlers
private void SimilarityComboBoxOnSelectedIndexChanged(object sender, EventArgs e) {
if (InvokeRequired) { Invoke((Action