#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.ComponentModel; using System.Linq; using System.Threading; using HeuristicLab.Algorithms.MemPR.Interfaces; using HeuristicLab.Analysis; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Random; namespace HeuristicLab.Algorithms.MemPR { [Item("MemPR Algorithm", "Base class for MemPR algorithms")] [StorableClass] public abstract class MemPRAlgorithm : BasicAlgorithm, INotifyPropertyChanged where TProblem : class, IItem, ISingleObjectiveHeuristicOptimizationProblem where TSolution : class, IItem where TPopulationContext : MemPRPopulationContext, new() where TSolutionContext : MemPRSolutionContext { public override Type ProblemType { get { return typeof(TProblem); } } public new TProblem Problem { get { return (TProblem)base.Problem; } set { base.Problem = value; } } public override bool SupportsPause { get { return true; } } protected string QualityName { get { return Problem != null && Problem.Evaluator != null ? Problem.Evaluator.QualityParameter.ActualName : null; } } public int? MaximumEvaluations { get { var val = ((OptionalValueParameter)Parameters["MaximumEvaluations"]).Value; return val != null ? val.Value : (int?)null; } set { var param = (OptionalValueParameter)Parameters["MaximumEvaluations"]; param.Value = value.HasValue ? new IntValue(value.Value) : null; } } public TimeSpan? MaximumExecutionTime { get { var val = ((OptionalValueParameter)Parameters["MaximumExecutionTime"]).Value; return val != null ? val.Value : (TimeSpan?)null; } set { var param = (OptionalValueParameter)Parameters["MaximumExecutionTime"]; param.Value = value.HasValue ? new TimeSpanValue(value.Value) : null; } } public double? TargetQuality { get { var val = ((OptionalValueParameter)Parameters["TargetQuality"]).Value; return val != null ? val.Value : (double?)null; } set { var param = (OptionalValueParameter)Parameters["TargetQuality"]; param.Value = value.HasValue ? new DoubleValue(value.Value) : null; } } protected FixedValueParameter MaximumPopulationSizeParameter { get { return ((FixedValueParameter)Parameters["MaximumPopulationSize"]); } } public int MaximumPopulationSize { get { return MaximumPopulationSizeParameter.Value.Value; } set { MaximumPopulationSizeParameter.Value.Value = value; } } public bool SetSeedRandomly { get { return ((FixedValueParameter)Parameters["SetSeedRandomly"]).Value.Value; } set { ((FixedValueParameter)Parameters["SetSeedRandomly"]).Value.Value = value; } } public int Seed { get { return ((FixedValueParameter)Parameters["Seed"]).Value.Value; } set { ((FixedValueParameter)Parameters["Seed"]).Value.Value = value; } } public IAnalyzer Analyzer { get { return ((ValueParameter)Parameters["Analyzer"]).Value; } set { ((ValueParameter)Parameters["Analyzer"]).Value = value; } } public IConstrainedValueParameter> SolutionModelTrainerParameter { get { return (IConstrainedValueParameter>)Parameters["SolutionModelTrainer"]; } } public IConstrainedValueParameter> LocalSearchParameter { get { return (IConstrainedValueParameter>)Parameters["LocalSearch"]; } } [Storable] private TPopulationContext context; public TPopulationContext Context { get { return context; } protected set { if (context == value) return; context = value; OnPropertyChanged("State"); } } [Storable] private BestAverageWorstQualityAnalyzer qualityAnalyzer; [Storable] private QualityPerClockAnalyzer qualityPerClockAnalyzer; [Storable] private QualityPerEvaluationsAnalyzer qualityPerEvaluationsAnalyzer; [StorableConstructor] protected MemPRAlgorithm(bool deserializing) : base(deserializing) { } protected MemPRAlgorithm(MemPRAlgorithm original, Cloner cloner) : base(original, cloner) { context = cloner.Clone(original.context); qualityAnalyzer = cloner.Clone(original.qualityAnalyzer); qualityPerClockAnalyzer = cloner.Clone(original.qualityPerClockAnalyzer); qualityPerEvaluationsAnalyzer = cloner.Clone(original.qualityPerEvaluationsAnalyzer); RegisterEventHandlers(); } protected MemPRAlgorithm() { Parameters.Add(new ValueParameter("Analyzer", "The analyzer to apply to the population.", new MultiAnalyzer())); Parameters.Add(new FixedValueParameter("MaximumPopulationSize", "The maximum size of the population that is evolved.", new IntValue(20))); Parameters.Add(new OptionalValueParameter("MaximumEvaluations", "The maximum number of solution evaluations.")); Parameters.Add(new OptionalValueParameter("MaximumExecutionTime", "The maximum runtime.", new TimeSpanValue(TimeSpan.FromMinutes(10)))); Parameters.Add(new OptionalValueParameter("TargetQuality", "The target quality at which the algorithm terminates.")); Parameters.Add(new FixedValueParameter("SetSeedRandomly", "Whether each run of the algorithm should be conducted with a new random seed.", new BoolValue(true))); Parameters.Add(new FixedValueParameter("Seed", "The random number seed that is used in case SetSeedRandomly is false.", new IntValue(0))); Parameters.Add(new ConstrainedValueParameter>("SolutionModelTrainer", "The object that creates a solution model that can be sampled.")); Parameters.Add(new ConstrainedValueParameter>("LocalSearch", "The local search operator to use.")); qualityAnalyzer = new BestAverageWorstQualityAnalyzer(); qualityPerClockAnalyzer = new QualityPerClockAnalyzer(); qualityPerEvaluationsAnalyzer = new QualityPerEvaluationsAnalyzer(); RegisterEventHandlers(); } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { RegisterEventHandlers(); } private void RegisterEventHandlers() { MaximumPopulationSizeParameter.Value.ValueChanged += MaximumPopulationSizeOnChanged; } private void MaximumPopulationSizeOnChanged(object sender, EventArgs eventArgs) { if (ExecutionState == ExecutionState.Started || ExecutionState == ExecutionState.Paused) throw new InvalidOperationException("Cannot change maximum population size before algorithm finishes."); Prepare(); } protected override void OnProblemChanged() { base.OnProblemChanged(); qualityAnalyzer.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name; qualityAnalyzer.MaximizationParameter.Hidden = true; qualityAnalyzer.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName; qualityAnalyzer.QualityParameter.Depth = 1; qualityAnalyzer.QualityParameter.Hidden = true; qualityAnalyzer.BestKnownQualityParameter.ActualName = Problem.BestKnownQualityParameter.Name; qualityAnalyzer.BestKnownQualityParameter.Hidden = true; var multiAnalyzer = Analyzer as MultiAnalyzer; if (multiAnalyzer != null) { multiAnalyzer.Operators.Clear(); if (Problem != null) { foreach (var analyzer in Problem.Operators.OfType()) { foreach (var param in analyzer.Parameters.OfType()) param.Depth = 1; multiAnalyzer.Operators.Add(analyzer, analyzer.EnabledByDefault || analyzer is ISimilarityBasedOperator); } } multiAnalyzer.Operators.Add(qualityAnalyzer, qualityAnalyzer.EnabledByDefault); multiAnalyzer.Operators.Add(qualityPerClockAnalyzer, true); multiAnalyzer.Operators.Add(qualityPerEvaluationsAnalyzer, true); } } public override void Prepare() { base.Prepare(); Results.Clear(); Context = null; } protected virtual TPopulationContext CreateContext() { return new TPopulationContext(); } public void StartSync() { using (var w = new AutoResetEvent(false)) { EventHandler handler = (sender, e) => { if (ExecutionState == ExecutionState.Paused || ExecutionState == ExecutionState.Stopped) w.Set(); }; ExecutionStateChanged += handler; try { Start(); w.WaitOne(); } finally { ExecutionStateChanged -= handler; } } } protected sealed override void Run(CancellationToken token) { if (Context == null) { Context = CreateContext(); if (SetSeedRandomly) Seed = new System.Random().Next(); Context.Random.Reset(Seed); Context.Scope.Variables.Add(new Variable("Results", Results)); Context.Problem = Problem; } if (MaximumExecutionTime.HasValue) CancellationTokenSource.CancelAfter(MaximumExecutionTime.Value); IExecutionContext context = null; foreach (var item in Problem.ExecutionContextItems) context = new Core.ExecutionContext(context, item, Context.Scope); context = new Core.ExecutionContext(context, this, Context.Scope); Context.Parent = context; if (!Context.Initialized) { // We initialize the population with two local optima while (Context.PopulationCount < 2) { var child = Create(token); Context.LocalSearchEvaluations += HillClimb(child, token); Context.LocalOptimaLevel += child.Fitness; Context.AddToPopulation(child); Context.BestQuality = child.Fitness; Analyze(CancellationToken.None); token.ThrowIfCancellationRequested(); if (Terminate()) return; } Context.LocalSearchEvaluations /= 2; Context.LocalOptimaLevel /= 2; Context.Initialized = true; } while (!Terminate()) { Iterate(token); Analyze(token); token.ThrowIfCancellationRequested(); } } private void Iterate(CancellationToken token) { var replaced = false; ISingleObjectiveSolutionScope offspring = null; offspring = Breed(token); if (offspring != null) { var replNew = Replace(offspring, token); if (replNew) { replaced = true; Context.ByBreeding++; } } offspring = Relink(token); if (offspring != null) { if (Replace(offspring, token)) { replaced = true; Context.ByRelinking++; } } offspring = Delink(token); if (offspring != null) { if (Replace(offspring, token)) { replaced = true; Context.ByDelinking++; } } offspring = Sample(token); if (offspring != null) { if (Replace(offspring, token)) { replaced = true; Context.BySampling++; } } if (!replaced && offspring != null) { if (Context.HillclimbingSuited(offspring.Fitness)) { HillClimb(offspring, token, CalculateSubspace(Context.Population.Select(x => x.Solution))); if (Replace(offspring, token)) { Context.ByHillclimbing++; replaced = true; } } } if (!replaced) { var before = Context.Population.SampleRandom(Context.Random); offspring = (ISingleObjectiveSolutionScope)before.Clone(); AdaptiveWalk(offspring, Context.LocalSearchEvaluations * 2, token); if (!Eq(before, offspring)) Context.AddAdaptivewalkingResult(before, offspring); if (Replace(offspring, token)) { Context.ByAdaptivewalking++; replaced = true; } } Context.Iterations++; } protected void Analyze(CancellationToken token) { IResult res; if (!Results.TryGetValue("EvaluatedSolutions", out res)) Results.Add(new Result("EvaluatedSolutions", new IntValue(Context.EvaluatedSolutions))); else ((IntValue)res.Value).Value = Context.EvaluatedSolutions; if (!Results.TryGetValue("Iterations", out res)) Results.Add(new Result("Iterations", new IntValue(Context.Iterations))); else ((IntValue)res.Value).Value = Context.Iterations; if (!Results.TryGetValue("LocalSearch Evaluations", out res)) Results.Add(new Result("LocalSearch Evaluations", new IntValue(Context.LocalSearchEvaluations))); else ((IntValue)res.Value).Value = Context.LocalSearchEvaluations; if (!Results.TryGetValue("ByBreeding", out res)) Results.Add(new Result("ByBreeding", new IntValue(Context.ByBreeding))); else ((IntValue)res.Value).Value = Context.ByBreeding; if (!Results.TryGetValue("ByRelinking", out res)) Results.Add(new Result("ByRelinking", new IntValue(Context.ByRelinking))); else ((IntValue)res.Value).Value = Context.ByRelinking; if (!Results.TryGetValue("ByDelinking", out res)) Results.Add(new Result("ByDelinking", new IntValue(Context.ByDelinking))); else ((IntValue)res.Value).Value = Context.ByDelinking; if (!Results.TryGetValue("BySampling", out res)) Results.Add(new Result("BySampling", new IntValue(Context.BySampling))); else ((IntValue)res.Value).Value = Context.BySampling; if (!Results.TryGetValue("ByHillclimbing", out res)) Results.Add(new Result("ByHillclimbing", new IntValue(Context.ByHillclimbing))); else ((IntValue)res.Value).Value = Context.ByHillclimbing; if (!Results.TryGetValue("ByAdaptivewalking", out res)) Results.Add(new Result("ByAdaptivewalking", new IntValue(Context.ByAdaptivewalking))); else ((IntValue)res.Value).Value = Context.ByAdaptivewalking; var sp = new ScatterPlot("Breeding Correlation", ""); sp.Rows.Add(new ScatterPlotDataRow("Parent1 vs Offspring", "", Context.BreedingStat.Select(x => new Point2D(x.Item1, x.Item4))) { VisualProperties = { PointSize = 6 }}); sp.Rows.Add(new ScatterPlotDataRow("Parent2 vs Offspring", "", Context.BreedingStat.Select(x => new Point2D(x.Item2, x.Item4))) { VisualProperties = { PointSize = 6 } }); sp.Rows.Add(new ScatterPlotDataRow("Parent Distance vs Offspring", "", Context.BreedingStat.Select(x => new Point2D(x.Item3, x.Item4))) { VisualProperties = { PointSize = 6 } }); if (!Results.TryGetValue("BreedingStat", out res)) { Results.Add(new Result("BreedingStat", sp)); } else res.Value = sp; sp = new ScatterPlot("Relinking Correlation", ""); sp.Rows.Add(new ScatterPlotDataRow("A vs Relink", "", Context.RelinkingStat.Select(x => new Point2D(x.Item1, x.Item4))) { VisualProperties = { PointSize = 6 } }); sp.Rows.Add(new ScatterPlotDataRow("B vs Relink", "", Context.RelinkingStat.Select(x => new Point2D(x.Item2, x.Item4))) { VisualProperties = { PointSize = 6 } }); sp.Rows.Add(new ScatterPlotDataRow("d(A,B) vs Offspring", "", Context.RelinkingStat.Select(x => new Point2D(x.Item3, x.Item4))) { VisualProperties = { PointSize = 6 } }); if (!Results.TryGetValue("RelinkingStat", out res)) { Results.Add(new Result("RelinkingStat", sp)); } else res.Value = sp; sp = new ScatterPlot("Delinking Correlation", ""); sp.Rows.Add(new ScatterPlotDataRow("A vs Delink", "", Context.DelinkingStat.Select(x => new Point2D(x.Item1, x.Item4))) { VisualProperties = { PointSize = 6 } }); sp.Rows.Add(new ScatterPlotDataRow("B vs Delink", "", Context.DelinkingStat.Select(x => new Point2D(x.Item2, x.Item4))) { VisualProperties = { PointSize = 6 } }); sp.Rows.Add(new ScatterPlotDataRow("d(A,B) vs Offspring", "", Context.DelinkingStat.Select(x => new Point2D(x.Item3, x.Item4))) { VisualProperties = { PointSize = 6 } }); if (!Results.TryGetValue("DelinkingStat", out res)) { Results.Add(new Result("DelinkingStat", sp)); } else res.Value = sp; sp = new ScatterPlot("Sampling Correlation", ""); sp.Rows.Add(new ScatterPlotDataRow("AvgFitness vs Sample", "", Context.SamplingStat.Select(x => new Point2D(x.Item1, x.Item2))) { VisualProperties = { PointSize = 6 } }); if (!Results.TryGetValue("SampleStat", out res)) { Results.Add(new Result("SampleStat", sp)); } else res.Value = sp; sp = new ScatterPlot("Hillclimbing Correlation", ""); sp.Rows.Add(new ScatterPlotDataRow("Start vs Improvement", "", Context.HillclimbingStat.Select(x => new Point2D(x.Item1, x.Item2))) { VisualProperties = { PointSize = 6 } }); if (!Results.TryGetValue("HillclimbingStat", out res)) { Results.Add(new Result("HillclimbingStat", sp)); } else res.Value = sp; sp = new ScatterPlot("Adaptivewalking Correlation", ""); sp.Rows.Add(new ScatterPlotDataRow("Start vs Best", "", Context.AdaptivewalkingStat.Select(x => new Point2D(x.Item1, x.Item2))) { VisualProperties = { PointSize = 6 } }); if (!Results.TryGetValue("AdaptivewalkingStat", out res)) { Results.Add(new Result("AdaptivewalkingStat", sp)); } else res.Value = sp; Context.RunOperator(Analyzer, Context.Scope, token); } protected bool Replace(ISingleObjectiveSolutionScope child, CancellationToken token) { if (double.IsNaN(child.Fitness)) { Context.Evaluate(child, token); Context.IncrementEvaluatedSolutions(1); } if (Context.IsBetter(child.Fitness, Context.BestQuality)) { Context.BestQuality = child.Fitness; Context.BestSolution = (TSolution)child.Solution.Clone(); } var popSize = MaximumPopulationSize; if (Context.Population.All(p => !Eq(p, child))) { if (Context.PopulationCount < popSize) { Context.AddToPopulation(child); return true;// Context.PopulationCount - 1; } // The set of replacement candidates consists of all solutions at least as good as the new one var candidates = Context.Population.Select((p, i) => new { Index = i, Individual = p }) .Where(x => x.Individual.Fitness == child.Fitness || Context.IsBetter(child, x.Individual)).ToList(); if (candidates.Count == 0) return false;// -1; var repCand = -1; var avgChildDist = 0.0; var minChildDist = double.MaxValue; var plateau = new List(); var worstPlateau = -1; var minAvgPlateauDist = double.MaxValue; var minPlateauDist = double.MaxValue; // If there are equally good solutions it is first tried to replace one of those // The criteria for replacement is that the new solution has better average distance // to all other solutions at this "plateau" foreach (var c in candidates.Where(x => x.Individual.Fitness == child.Fitness)) { var dist = Dist(c.Individual, child); avgChildDist += dist; if (dist < minChildDist) minChildDist = dist; plateau.Add(c.Index); } if (plateau.Count > 2) { avgChildDist /= plateau.Count; foreach (var p in plateau) { var avgDist = 0.0; var minDist = double.MaxValue; foreach (var q in plateau) { if (p == q) continue; var dist = Dist(Context.AtPopulation(p), Context.AtPopulation(q)); avgDist += dist; if (dist < minDist) minDist = dist; } var d = Dist(Context.AtPopulation(p), child); avgDist += d; avgDist /= plateau.Count; if (d < minDist) minDist = d; if (minDist < minPlateauDist || (minDist == minPlateauDist && avgDist < avgChildDist)) { minAvgPlateauDist = avgDist; minPlateauDist = minDist; worstPlateau = p; } } if (minPlateauDist < minChildDist || (minPlateauDist == minChildDist && minAvgPlateauDist < avgChildDist)) repCand = worstPlateau; } if (repCand < 0) { // If no solution at the same plateau were identified for replacement // a worse solution with smallest distance is chosen var minDist = double.MaxValue; foreach (var c in candidates.Where(x => Context.IsBetter(child, x.Individual))) { var d = Dist(c.Individual, child); if (d < minDist) { minDist = d; repCand = c.Index; } } } // If no replacement was identified, this can only mean that there are // no worse solutions and those on the same plateau are all better // stretched out than the new one if (repCand < 0) return false;// -1; Context.ReplaceAtPopulation(repCand, child); return true;// repCand; } return false;// -1; } protected bool Eq(ISingleObjectiveSolutionScope a, ISingleObjectiveSolutionScope b) { return Eq(a.Solution, b.Solution); } protected abstract bool Eq(TSolution a, TSolution b); protected abstract double Dist(ISingleObjectiveSolutionScope a, ISingleObjectiveSolutionScope b); protected abstract ISolutionSubspace CalculateSubspace(IEnumerable solutions, bool inverse = false); #region Create protected virtual ISingleObjectiveSolutionScope Create(CancellationToken token) { var child = Context.ToScope(null); Context.RunOperator(Problem.SolutionCreator, child, token); return child; } #endregion #region Improve protected virtual int HillClimb(ISingleObjectiveSolutionScope scope, CancellationToken token, ISolutionSubspace subspace = null) { if (double.IsNaN(scope.Fitness)) { Context.Evaluate(scope, token); Context.IncrementEvaluatedSolutions(1); } var before = (ISingleObjectiveSolutionScope)scope.Clone(); var lscontext = Context.CreateSingleSolutionContext(scope); LocalSearchParameter.Value.Optimize(lscontext); Context.AddHillclimbingResult(before, scope); Context.IncrementEvaluatedSolutions(lscontext.EvaluatedSolutions); return lscontext.EvaluatedSolutions; } protected virtual void AdaptiveClimb(ISingleObjectiveSolutionScope scope, int maxEvals, CancellationToken token, ISolutionSubspace subspace = null) { if (double.IsNaN(scope.Fitness)) { Context.Evaluate(scope, token); Context.IncrementEvaluatedSolutions(1); } var newScope = (ISingleObjectiveSolutionScope)scope.Clone(); AdaptiveWalk(newScope, maxEvals, token, subspace); Context.AddAdaptivewalkingResult(scope, newScope); if (Context.IsBetter(newScope, scope)) { scope.Adopt(newScope); } } protected abstract void AdaptiveWalk(ISingleObjectiveSolutionScope scope, int maxEvals, CancellationToken token, ISolutionSubspace subspace = null); #endregion #region Breed protected virtual ISingleObjectiveSolutionScope Breed(CancellationToken token) { var i1 = Context.Random.Next(Context.PopulationCount); var i2 = Context.Random.Next(Context.PopulationCount); while (i1 == i2) i2 = Context.Random.Next(Context.PopulationCount); var p1 = Context.AtPopulation(i1); var p2 = Context.AtPopulation(i2); if (double.IsNaN(p1.Fitness)) { Context.Evaluate(p1, token); Context.IncrementEvaluatedSolutions(1); } if (double.IsNaN(p2.Fitness)) { Context.Evaluate(p2, token); Context.IncrementEvaluatedSolutions(1); } if (!Context.BreedingSuited(p1, p2, Dist(p1, p2))) return null; var offspring = Breed(p1, p2, token); if (double.IsNaN(offspring.Fitness)) { Context.Evaluate(offspring, token); Context.IncrementEvaluatedSolutions(1); } Context.AddBreedingResult(p1, p2, Dist(p1, p2), offspring); // new best solutions are improved using hill climbing in full solution space if (Context.Population.All(p => Context.IsBetter(offspring, p))) HillClimb(offspring, token); else if (!Eq(offspring, p1) && !Eq(offspring, p2) && Context.HillclimbingSuited(offspring.Fitness)) HillClimb(offspring, token, CalculateSubspace(new[] { p1.Solution, p2.Solution }, inverse: false)); return offspring; } protected abstract ISingleObjectiveSolutionScope Breed(ISingleObjectiveSolutionScope p1, ISingleObjectiveSolutionScope p2, CancellationToken token); #endregion #region Relink/Delink protected virtual ISingleObjectiveSolutionScope Relink(CancellationToken token) { var i1 = Context.Random.Next(Context.PopulationCount); var i2 = Context.Random.Next(Context.PopulationCount); while (i1 == i2) i2 = Context.Random.Next(Context.PopulationCount); var p1 = Context.AtPopulation(i1); var p2 = Context.AtPopulation(i2); if (!Context.RelinkSuited(p1, p2, Dist(p1, p2))) return null; var link = PerformRelinking(p1, p2, token, delink: false); // new best solutions are improved using hill climbing in full solution space if (Context.Population.All(p => Context.IsBetter(link, p))) HillClimb(link, token); else if (!Eq(link, p1) && !Eq(link, p2) && Context.HillclimbingSuited(link.Fitness)) HillClimb(link, token, CalculateSubspace(new[] { p1.Solution, p2.Solution }, inverse: true)); return link; } protected virtual ISingleObjectiveSolutionScope Delink(CancellationToken token) { var i1 = Context.Random.Next(Context.PopulationCount); var i2 = Context.Random.Next(Context.PopulationCount); while (i1 == i2) i2 = Context.Random.Next(Context.PopulationCount); var p1 = Context.AtPopulation(i1); var p2 = Context.AtPopulation(i2); if (!Context.DelinkSuited(p1, p2, Dist(p1, p2))) return null; var link = PerformRelinking(p1, p2, token, delink: true); // new best solutions are improved using hill climbing in full solution space if (Context.Population.All(p => Context.IsBetter(link, p))) HillClimb(link, token); // intentionally not making hill climbing otherwise after delinking in sub-space return link; } protected virtual ISingleObjectiveSolutionScope PerformRelinking(ISingleObjectiveSolutionScope a, ISingleObjectiveSolutionScope b, CancellationToken token, bool delink = false) { var relink = Link(a, b, token, delink); if (double.IsNaN(relink.Fitness)) { Context.Evaluate(relink, token); Context.IncrementEvaluatedSolutions(1); } if (delink) { Context.AddDelinkingResult(a, b, Dist(a, b), relink); } else { Context.AddRelinkingResult(a, b, Dist(a, b), relink); } return relink; } protected abstract ISingleObjectiveSolutionScope Link(ISingleObjectiveSolutionScope a, ISingleObjectiveSolutionScope b, CancellationToken token, bool delink = false); #endregion #region Sample protected virtual ISingleObjectiveSolutionScope Sample(CancellationToken token) { if (Context.PopulationCount == MaximumPopulationSize) { SolutionModelTrainerParameter.Value.TrainModel(Context); ISingleObjectiveSolutionScope bestSample = null; var tries = 1; var avgDist = (from a in Context.Population.Shuffle(Context.Random) from b in Context.Population.Shuffle(Context.Random) select Dist(a, b)).Average(); for (; tries < 100; tries++) { var sample = Context.ToScope(Context.Model.Sample()); Context.Evaluate(sample, token); if (bestSample == null || Context.IsBetter(sample, bestSample)) { bestSample = sample; if (Context.Population.Any(x => !Context.IsBetter(x, bestSample))) break; } if (!Context.SamplingSuited(avgDist)) break; } Context.IncrementEvaluatedSolutions(tries); Context.AddSamplingResult(bestSample, avgDist); return bestSample; } return null; } #endregion protected virtual bool Terminate() { var maximization = ((IValueParameter)Problem.MaximizationParameter).Value.Value; return MaximumEvaluations.HasValue && Context.EvaluatedSolutions >= MaximumEvaluations.Value || MaximumExecutionTime.HasValue && ExecutionTime >= MaximumExecutionTime.Value || TargetQuality.HasValue && (maximization && Context.BestQuality >= TargetQuality.Value || !maximization && Context.BestQuality <= TargetQuality.Value); } public event PropertyChangedEventHandler PropertyChanged; protected void OnPropertyChanged(string property) { var handler = PropertyChanged; if (handler != null) handler(this, new PropertyChangedEventArgs(property)); } } }