#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Collections; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis { /// /// Represents regression solutions that contain an ensemble of multiple regression models /// [StorableClass] [Item("Regression Ensemble Solution", "A regression solution that contains an ensemble of multiple regression models")] [Creatable(CreatableAttribute.Categories.DataAnalysisEnsembles, Priority = 100)] public sealed class RegressionEnsembleSolution : RegressionSolutionBase, IRegressionEnsembleSolution { private readonly Dictionary trainingEvaluationCache = new Dictionary(); private readonly Dictionary testEvaluationCache = new Dictionary(); private readonly Dictionary evaluationCache = new Dictionary(); public new IRegressionEnsembleModel Model { get { return (IRegressionEnsembleModel)base.Model; } } public new RegressionEnsembleProblemData ProblemData { get { return (RegressionEnsembleProblemData)base.ProblemData; } set { base.ProblemData = value; } } [Storable] private readonly ItemCollection regressionSolutions; public IItemCollection RegressionSolutions { get { return regressionSolutions; } } [Storable] private readonly Dictionary trainingPartitions; [Storable] private readonly Dictionary testPartitions; [StorableConstructor] private RegressionEnsembleSolution(bool deserializing) : base(deserializing) { regressionSolutions = new ItemCollection(); } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { if (!regressionSolutions.Any()) { foreach (var model in Model.Models) { IRegressionProblemData problemData = (IRegressionProblemData)ProblemData.Clone(); problemData.TrainingPartition.Start = trainingPartitions[model].Start; problemData.TrainingPartition.End = trainingPartitions[model].End; problemData.TestPartition.Start = testPartitions[model].Start; problemData.TestPartition.End = testPartitions[model].End; regressionSolutions.Add(model.CreateRegressionSolution(problemData)); } } RegisterModelEvents(); RegisterRegressionSolutionsEventHandler(); } private RegressionEnsembleSolution(RegressionEnsembleSolution original, Cloner cloner) : base(original, cloner) { trainingPartitions = new Dictionary(); testPartitions = new Dictionary(); foreach (var pair in original.trainingPartitions) { trainingPartitions[cloner.Clone(pair.Key)] = cloner.Clone(pair.Value); } foreach (var pair in original.testPartitions) { testPartitions[cloner.Clone(pair.Key)] = cloner.Clone(pair.Value); } evaluationCache = new Dictionary(original.ProblemData.Dataset.Rows); trainingEvaluationCache = new Dictionary(original.ProblemData.TrainingIndices.Count()); testEvaluationCache = new Dictionary(original.ProblemData.TestIndices.Count()); regressionSolutions = cloner.Clone(original.regressionSolutions); RegisterModelEvents(); RegisterRegressionSolutionsEventHandler(); } public RegressionEnsembleSolution() : base(new RegressionEnsembleModel(), RegressionEnsembleProblemData.EmptyProblemData) { trainingPartitions = new Dictionary(); testPartitions = new Dictionary(); regressionSolutions = new ItemCollection(); RegisterModelEvents(); RegisterRegressionSolutionsEventHandler(); } public RegressionEnsembleSolution(IRegressionProblemData problemData) : this(new RegressionEnsembleModel(), problemData) { } public RegressionEnsembleSolution(IRegressionEnsembleModel model, IRegressionProblemData problemData) : base(model, new RegressionEnsembleProblemData(problemData)) { trainingPartitions = new Dictionary(); testPartitions = new Dictionary(); regressionSolutions = new ItemCollection(); evaluationCache = new Dictionary(problemData.Dataset.Rows); trainingEvaluationCache = new Dictionary(problemData.TrainingIndices.Count()); testEvaluationCache = new Dictionary(problemData.TestIndices.Count()); var solutions = model.Models.Select(m => m.CreateRegressionSolution((IRegressionProblemData)problemData.Clone())); foreach (var solution in solutions) { regressionSolutions.Add(solution); trainingPartitions.Add(solution.Model, solution.ProblemData.TrainingPartition); testPartitions.Add(solution.Model, solution.ProblemData.TestPartition); } RecalculateResults(); RegisterModelEvents(); RegisterRegressionSolutionsEventHandler(); } public override IDeepCloneable Clone(Cloner cloner) { return new RegressionEnsembleSolution(this, cloner); } private void RegisterModelEvents() { Model.Changed += Model_Changed; } private void RegisterRegressionSolutionsEventHandler() { regressionSolutions.ItemsAdded += new CollectionItemsChangedEventHandler(regressionSolutions_ItemsAdded); regressionSolutions.ItemsRemoved += new CollectionItemsChangedEventHandler(regressionSolutions_ItemsRemoved); regressionSolutions.CollectionReset += new CollectionItemsChangedEventHandler(regressionSolutions_CollectionReset); } #region Evaluation public override IEnumerable EstimatedValues { get { return GetEstimatedValues(Enumerable.Range(0, ProblemData.Dataset.Rows)); } } public override IEnumerable EstimatedTrainingValues { get { var rows = ProblemData.TrainingIndices; var rowsToEvaluate = rows.Except(trainingEvaluationCache.Keys); var rowsEnumerator = rowsToEvaluate.GetEnumerator(); var valuesEnumerator = Model.GetEstimatedValues(ProblemData.Dataset, rowsToEvaluate, (r, m) => RowIsTrainingForModel(r, m) && !RowIsTestForModel(r, m)).GetEnumerator(); while (rowsEnumerator.MoveNext() & valuesEnumerator.MoveNext()) { trainingEvaluationCache.Add(rowsEnumerator.Current, valuesEnumerator.Current); } return rows.Select(row => trainingEvaluationCache[row]); } } public override IEnumerable EstimatedTestValues { get { var rows = ProblemData.TestIndices; var rowsToEvaluate = rows.Except(testEvaluationCache.Keys); var rowsEnumerator = rowsToEvaluate.GetEnumerator(); var valuesEnumerator = Model.GetEstimatedValues(ProblemData.Dataset, rowsToEvaluate, RowIsTestForModel).GetEnumerator(); while (rowsEnumerator.MoveNext() & valuesEnumerator.MoveNext()) { testEvaluationCache.Add(rowsEnumerator.Current, valuesEnumerator.Current); } return rows.Select(row => testEvaluationCache[row]); } } private bool RowIsTrainingForModel(int currentRow, IRegressionModel model) { return trainingPartitions == null || !trainingPartitions.ContainsKey(model) || (trainingPartitions[model].Start <= currentRow && currentRow < trainingPartitions[model].End); } private bool RowIsTestForModel(int currentRow, IRegressionModel model) { return testPartitions == null || !testPartitions.ContainsKey(model) || (testPartitions[model].Start <= currentRow && currentRow < testPartitions[model].End); } public override IEnumerable GetEstimatedValues(IEnumerable rows) { var rowsToEvaluate = rows.Except(evaluationCache.Keys); var rowsEnumerator = rowsToEvaluate.GetEnumerator(); var valuesEnumerator = Model.GetEstimatedValues(ProblemData.Dataset, rowsToEvaluate).GetEnumerator(); while (rowsEnumerator.MoveNext() & valuesEnumerator.MoveNext()) { evaluationCache.Add(rowsEnumerator.Current, valuesEnumerator.Current); } return rows.Select(row => evaluationCache[row]); } public IEnumerable> GetEstimatedValueVectors(IEnumerable rows) { return Model.GetEstimatedValueVectors(ProblemData.Dataset, rows); } #endregion protected override void OnProblemDataChanged() { trainingEvaluationCache.Clear(); testEvaluationCache.Clear(); evaluationCache.Clear(); IRegressionProblemData problemData = new RegressionProblemData(ProblemData.Dataset, ProblemData.AllowedInputVariables, ProblemData.TargetVariable); problemData.TrainingPartition.Start = ProblemData.TrainingPartition.Start; problemData.TrainingPartition.End = ProblemData.TrainingPartition.End; problemData.TestPartition.Start = ProblemData.TestPartition.Start; problemData.TestPartition.End = ProblemData.TestPartition.End; foreach (var solution in RegressionSolutions) { if (solution is RegressionEnsembleSolution) solution.ProblemData = ProblemData; else solution.ProblemData = problemData; } foreach (var trainingPartition in trainingPartitions.Values) { trainingPartition.Start = ProblemData.TrainingPartition.Start; trainingPartition.End = ProblemData.TrainingPartition.End; } foreach (var testPartition in testPartitions.Values) { testPartition.Start = ProblemData.TestPartition.Start; testPartition.End = ProblemData.TestPartition.End; } base.OnProblemDataChanged(); } private void Model_Changed(object sender, EventArgs e) { var modelSet = new HashSet(Model.Models); foreach (var model in Model.Models) { if (!trainingPartitions.ContainsKey(model)) trainingPartitions.Add(model, ProblemData.TrainingPartition); if (!testPartitions.ContainsKey(model)) testPartitions.Add(model, ProblemData.TrainingPartition); } foreach (var model in trainingPartitions.Keys) { if (modelSet.Contains(model)) continue; trainingPartitions.Remove(model); testPartitions.Remove(model); } trainingEvaluationCache.Clear(); testEvaluationCache.Clear(); evaluationCache.Clear(); OnModelChanged(); } public void AddRegressionSolutions(IEnumerable solutions) { regressionSolutions.AddRange(solutions); } public void RemoveRegressionSolutions(IEnumerable solutions) { regressionSolutions.RemoveRange(solutions); } private void regressionSolutions_ItemsAdded(object sender, CollectionItemsChangedEventArgs e) { foreach (var solution in e.Items) { trainingPartitions.Add(solution.Model, solution.ProblemData.TrainingPartition); testPartitions.Add(solution.Model, solution.ProblemData.TestPartition); } Model.AddRange(e.Items.Select(s => s.Model)); } private void regressionSolutions_ItemsRemoved(object sender, CollectionItemsChangedEventArgs e) { foreach (var solution in e.Items) { trainingPartitions.Remove(solution.Model); testPartitions.Remove(solution.Model); } Model.RemoveRange(e.Items.Select(s => s.Model)); } private void regressionSolutions_CollectionReset(object sender, CollectionItemsChangedEventArgs e) { foreach (var solution in e.OldItems) { trainingPartitions.Remove(solution.Model); testPartitions.Remove(solution.Model); } Model.RemoveRange(e.OldItems.Select(s => s.Model)); foreach (var solution in e.Items) { trainingPartitions.Add(solution.Model, solution.ProblemData.TrainingPartition); testPartitions.Add(solution.Model, solution.ProblemData.TestPartition); } Model.AddRange(e.Items.Select(s => s.Model)); } } }