#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Parameters;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Optimization;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.DataAnalysis;
using HeuristicLab.Problems.DataAnalysis.Symbolic;
using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
namespace HeuristicLab.Algorithms.DataAnalysis {
///
/// Nonlinear regression data analysis algorithm.
///
[Item("Nonlinear Regression (NLR)", "Nonlinear regression (curve fitting) data analysis algorithm (wrapper for ALGLIB).")]
[Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 120)]
[StorableClass]
public sealed class NonlinearRegression : FixedDataAnalysisAlgorithm {
private const string LinearRegressionModelResultName = "Regression solution";
private const string ModelStructureParameterName = "Model structure";
private const string IterationsParameterName = "Iterations";
public IFixedValueParameter ModelStructureParameter {
get { return (IFixedValueParameter)Parameters[ModelStructureParameterName]; }
}
public IFixedValueParameter IterationsParameter {
get { return (IFixedValueParameter)Parameters[IterationsParameterName]; }
}
public string ModelStructure {
get { return ModelStructureParameter.Value.Value; }
set { ModelStructureParameter.Value.Value = value; }
}
public int Iterations {
get { return IterationsParameter.Value.Value; }
set { IterationsParameter.Value.Value = value; }
}
[StorableConstructor]
private NonlinearRegression(bool deserializing) : base(deserializing) { }
private NonlinearRegression(NonlinearRegression original, Cloner cloner)
: base(original, cloner) {
}
public NonlinearRegression()
: base() {
Problem = new RegressionProblem();
Parameters.Add(new FixedValueParameter(ModelStructureParameterName, "The function for which the parameters must be fit (only numeric constants are tuned).", new StringValue("1.0 * x*x + 0.0")));
Parameters.Add(new FixedValueParameter(IterationsParameterName, "The maximum number of iterations for constants optimization.", new IntValue(200)));
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() { }
public override IDeepCloneable Clone(Cloner cloner) {
return new NonlinearRegression(this, cloner);
}
#region nonlinear regression
protected override void Run() {
var solution = CreateRegressionSolution(Problem.ProblemData, ModelStructure, Iterations);
Results.Add(new Result(LinearRegressionModelResultName, "The nonlinear regression solution.", solution));
Results.Add(new Result("Root mean square error (train)", "The root of the mean of squared errors of the regression solution on the training set.", new DoubleValue(solution.TrainingRootMeanSquaredError)));
Results.Add(new Result("Root mean square error (test)", "The root of the mean of squared errors of the regression solution on the test set.", new DoubleValue(solution.TestRootMeanSquaredError)));
}
public static ISymbolicRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData, string modelStructure, int maxIterations) {
var parser = new InfixExpressionParser();
var tree = parser.Parse(modelStructure);
var simplifier = new SymbolicDataAnalysisExpressionTreeSimplifier();
if (!SymbolicRegressionConstantOptimizationEvaluator.CanOptimizeConstants(tree)) throw new ArgumentException("The optimizer does not support the specified model structure.");
var interpreter = new SymbolicDataAnalysisExpressionTreeLinearInterpreter();
SymbolicRegressionConstantOptimizationEvaluator.OptimizeConstants(interpreter, tree, problemData, problemData.TrainingIndices,
applyLinearScaling: false, maxIterations: maxIterations,
updateVariableWeights: false, updateConstantsInTree: true);
var scaledModel = new SymbolicRegressionModel(problemData.TargetVariable, tree, (ISymbolicDataAnalysisExpressionTreeInterpreter)interpreter.Clone());
scaledModel.Scale(problemData);
SymbolicRegressionSolution solution = new SymbolicRegressionSolution(scaledModel, (IRegressionProblemData)problemData.Clone());
solution.Model.Name = "Regression Model";
solution.Name = "Regression Solution";
return solution;
}
#endregion
}
}