#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Diagnostics.Contracts; using System.Linq; using HeuristicLab.Algorithms.DataAnalysis.MctsSymbolicRegression.Policies; using HeuristicLab.Core; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Problems.DataAnalysis; using HeuristicLab.Problems.DataAnalysis.Symbolic; using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression; using HeuristicLab.Random; namespace HeuristicLab.Algorithms.DataAnalysis.MctsSymbolicRegression { public static class MctsSymbolicRegressionStatic { // TODO: SGD with adagrad instead of lbfgs? // TODO: check Taylor expansion capabilities (ln(x), sqrt(x), exp(x)) in combination with GBT // TODO: optimize for 3 targets concurrently (y, 1/y, exp(y), and log(y))? Would simplify the number of possible expressions again #region static API public interface IState { bool Done { get; } ISymbolicRegressionModel BestModel { get; } double BestSolutionTrainingQuality { get; } double BestSolutionTestQuality { get; } int TotalRollouts { get; } int EffectiveRollouts { get; } int FuncEvaluations { get; } int GradEvaluations { get; } // number of gradient evaluations (* num parameters) to get a value representative of the effort comparable to the number of function evaluations // TODO other stats on LM optimizer might be interesting here } // created through factory method private class State : IState { private const int MaxParams = 100; // state variables used by MCTS internal readonly Automaton automaton; internal IRandom random { get; private set; } internal readonly Tree tree; internal readonly Func evalFun; internal readonly IPolicy treePolicy; // MCTS might get stuck. Track statistics on the number of effective rollouts internal int totalRollouts; internal int effectiveRollouts; // state variables used only internally (for eval function) private readonly IRegressionProblemData problemData; private readonly double[][] x; private readonly double[] y; private readonly double[][] testX; private readonly double[] testY; private readonly double[] scalingFactor; private readonly double[] scalingOffset; private readonly int constOptIterations; private readonly double lowerEstimationLimit, upperEstimationLimit; private readonly ExpressionEvaluator evaluator, testEvaluator; // values for best solution private double bestRSq; private byte[] bestCode; private int bestNParams; private double[] bestConsts; // stats private int funcEvaluations; private int gradEvaluations; // buffers private readonly double[] ones; // vector of ones (as default params) private readonly double[] constsBuf; private readonly double[] predBuf, testPredBuf; private readonly double[][] gradBuf; public State(IRegressionProblemData problemData, uint randSeed, int maxVariables, bool scaleVariables, int constOptIterations, IPolicy treePolicy = null, double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue, bool allowProdOfVars = true, bool allowExp = true, bool allowLog = true, bool allowInv = true, bool allowMultipleTerms = false) { this.problemData = problemData; this.constOptIterations = constOptIterations; this.evalFun = this.Eval; this.lowerEstimationLimit = lowerEstimationLimit; this.upperEstimationLimit = upperEstimationLimit; random = new MersenneTwister(randSeed); // prepare data for evaluation double[][] x; double[] y; double[][] testX; double[] testY; double[] scalingFactor; double[] scalingOffset; // get training and test datasets (scale linearly based on training set if required) GenerateData(problemData, scaleVariables, problemData.TrainingIndices, out x, out y, out scalingFactor, out scalingOffset); GenerateData(problemData, problemData.TestIndices, scalingFactor, scalingOffset, out testX, out testY); this.x = x; this.y = y; this.testX = testX; this.testY = testY; this.scalingFactor = scalingFactor; this.scalingOffset = scalingOffset; this.evaluator = new ExpressionEvaluator(y.Length, lowerEstimationLimit, upperEstimationLimit); // we need a separate evaluator because the vector length for the test dataset might differ this.testEvaluator = new ExpressionEvaluator(testY.Length, lowerEstimationLimit, upperEstimationLimit); this.automaton = new Automaton(x, maxVariables, allowProdOfVars, allowExp, allowLog, allowInv, allowMultipleTerms); this.treePolicy = treePolicy ?? new Ucb(); this.tree = new Tree() { state = automaton.CurrentState, actionStatistics = treePolicy.CreateActionStatistics() }; // reset best solution this.bestRSq = 0; // code for default solution (constant model) this.bestCode = new byte[] { (byte)OpCodes.LoadConst0, (byte)OpCodes.Exit }; this.bestNParams = 0; this.bestConsts = null; // init buffers this.ones = Enumerable.Repeat(1.0, MaxParams).ToArray(); constsBuf = new double[MaxParams]; this.predBuf = new double[y.Length]; this.testPredBuf = new double[testY.Length]; this.gradBuf = Enumerable.Range(0, MaxParams).Select(_ => new double[y.Length]).ToArray(); } #region IState inferface public bool Done { get { return tree != null && tree.Done; } } public double BestSolutionTrainingQuality { get { evaluator.Exec(bestCode, x, bestConsts, predBuf); return RSq(y, predBuf); } } public double BestSolutionTestQuality { get { testEvaluator.Exec(bestCode, testX, bestConsts, testPredBuf); return RSq(testY, testPredBuf); } } // takes the code of the best solution and creates and equivalent symbolic regression model public ISymbolicRegressionModel BestModel { get { var treeGen = new SymbolicExpressionTreeGenerator(problemData.AllowedInputVariables.ToArray()); var interpreter = new SymbolicDataAnalysisExpressionTreeLinearInterpreter(); var t = new SymbolicExpressionTree(treeGen.Exec(bestCode, bestConsts, bestNParams, scalingFactor, scalingOffset)); var model = new SymbolicRegressionModel(problemData.TargetVariable, t, interpreter, lowerEstimationLimit, upperEstimationLimit); // model has already been scaled linearly in Eval return model; } } public int TotalRollouts { get { return totalRollouts; } } public int EffectiveRollouts { get { return effectiveRollouts; } } public int FuncEvaluations { get { return funcEvaluations; } } public int GradEvaluations { get { return gradEvaluations; } } // number of gradient evaluations (* num parameters) to get a value representative of the effort comparable to the number of function evaluations #endregion private double Eval(byte[] code, int nParams) { double[] optConsts; double q; Eval(code, nParams, out q, out optConsts); if (q > bestRSq) { bestRSq = q; bestNParams = nParams; this.bestCode = new byte[code.Length]; this.bestConsts = new double[bestNParams]; Array.Copy(code, bestCode, code.Length); Array.Copy(optConsts, bestConsts, bestNParams); } return q; } private void Eval(byte[] code, int nParams, out double rsq, out double[] optConsts) { // we make a first pass to determine a valid starting configuration for all constants // constant c in log(c + f(x)) is adjusted to guarantee that x is positive (see expression evaluator) // scale and offset are set to optimal starting configuration // assumes scale is the first param and offset is the last param double alpha; double beta; // reset constants Array.Copy(ones, constsBuf, nParams); evaluator.Exec(code, x, constsBuf, predBuf, adjustOffsetForLogAndExp: true); funcEvaluations++; // calc opt scaling (alpha*f(x) + beta) OnlineCalculatorError error; OnlineLinearScalingParameterCalculator.Calculate(predBuf, y, out alpha, out beta, out error); if (error == OnlineCalculatorError.None) { constsBuf[0] *= beta; constsBuf[nParams - 1] = constsBuf[nParams - 1] * beta + alpha; } if (nParams <= 2 || constOptIterations <= 0) { // if we don't need to optimize parameters then we are done // changing scale and offset does not influence r² rsq = RSq(y, predBuf); optConsts = constsBuf; } else { // optimize constants using the starting point calculated above OptimizeConstsLm(code, constsBuf, nParams, 0.0, nIters: constOptIterations); evaluator.Exec(code, x, constsBuf, predBuf); funcEvaluations++; rsq = RSq(y, predBuf); optConsts = constsBuf; } } #region helpers private static double RSq(IEnumerable x, IEnumerable y) { OnlineCalculatorError error; double r = OnlinePearsonsRCalculator.Calculate(x, y, out error); return error == OnlineCalculatorError.None ? r * r : 0.0; } private void OptimizeConstsLm(byte[] code, double[] consts, int nParams, double epsF = 0.0, int nIters = 100) { double[] optConsts = new double[nParams]; // allocate a smaller buffer for constants opt (TODO perf?) Array.Copy(consts, optConsts, nParams); alglib.minlmstate state; alglib.minlmreport rep = null; alglib.minlmcreatevj(y.Length, optConsts, out state); alglib.minlmsetcond(state, 0.0, epsF, 0.0, nIters); //alglib.minlmsetgradientcheck(state, 0.000001); alglib.minlmoptimize(state, Func, FuncAndJacobian, null, code); alglib.minlmresults(state, out optConsts, out rep); funcEvaluations += rep.nfunc; gradEvaluations += rep.njac * nParams; if (rep.terminationtype < 0) throw new ArgumentException("lm failed: termination type = " + rep.terminationtype); // only use optimized constants if successful if (rep.terminationtype >= 0) { Array.Copy(optConsts, consts, optConsts.Length); } } private void Func(double[] arg, double[] fi, object obj) { var code = (byte[])obj; evaluator.Exec(code, x, arg, predBuf); // gradients are nParams x vLen for (int r = 0; r < predBuf.Length; r++) { var res = predBuf[r] - y[r]; fi[r] = res; } } private void FuncAndJacobian(double[] arg, double[] fi, double[,] jac, object obj) { int nParams = arg.Length; var code = (byte[])obj; evaluator.ExecGradient(code, x, arg, predBuf, gradBuf); // gradients are nParams x vLen for (int r = 0; r < predBuf.Length; r++) { var res = predBuf[r] - y[r]; fi[r] = res; for (int k = 0; k < nParams; k++) { jac[r, k] = gradBuf[k][r]; } } } #endregion } public static IState CreateState(IRegressionProblemData problemData, uint randSeed, int maxVariables = 3, bool scaleVariables = true, int constOptIterations = 0, IPolicy policy = null, double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue, bool allowProdOfVars = true, bool allowExp = true, bool allowLog = true, bool allowInv = true, bool allowMultipleTerms = false ) { return new State(problemData, randSeed, maxVariables, scaleVariables, constOptIterations, policy, lowerEstimationLimit, upperEstimationLimit, allowProdOfVars, allowExp, allowLog, allowInv, allowMultipleTerms); } // returns the quality of the evaluated solution public static double MakeStep(IState state) { var mctsState = state as State; if (mctsState == null) throw new ArgumentException("state"); if (mctsState.Done) throw new NotSupportedException("The tree search has enumerated all possible solutions."); return TreeSearch(mctsState); } #endregion private static double TreeSearch(State mctsState) { var automaton = mctsState.automaton; var tree = mctsState.tree; var eval = mctsState.evalFun; var rand = mctsState.random; var treePolicy = mctsState.treePolicy; double q = 0; bool success = false; do { automaton.Reset(); success = TryTreeSearchRec(rand, tree, automaton, eval, treePolicy, out q); mctsState.totalRollouts++; } while (!success && !tree.Done); mctsState.effectiveRollouts++; return q; } // tree search might fail because of constraints for expressions // in this case we get stuck we just restart // see ConstraintHandler.cs for more info private static bool TryTreeSearchRec(IRandom rand, Tree tree, Automaton automaton, Func eval, IPolicy treePolicy, out double q) { Tree selectedChild = null; Contract.Assert(tree.state == automaton.CurrentState); Contract.Assert(!tree.Done); if (tree.children == null) { if (automaton.IsFinalState(tree.state)) { // final state tree.Done = true; // EVALUATE byte[] code; int nParams; automaton.GetCode(out code, out nParams); q = eval(code, nParams); treePolicy.Update(tree.actionStatistics, q); return true; // we reached a final state } else { // EXPAND int[] possibleFollowStates; int nFs; automaton.FollowStates(automaton.CurrentState, out possibleFollowStates, out nFs); if (nFs == 0) { // stuck in a dead end (no final state and no allowed follow states) q = 0; tree.Done = true; tree.children = null; return false; } tree.children = new Tree[nFs]; for (int i = 0; i < tree.children.Length; i++) tree.children[i] = new Tree() { children = null, state = possibleFollowStates[i], actionStatistics = treePolicy.CreateActionStatistics() }; selectedChild = nFs > 1 ? SelectFinalOrRandom(automaton, tree, rand) : tree.children[0]; } } else { // tree.children != null // UCT selection within tree int selectedIdx = 0; if (tree.children.Length > 1) { selectedIdx = treePolicy.Select(tree.children.Select(ch => ch.actionStatistics), rand); } selectedChild = tree.children[selectedIdx]; } // make selected step and recurse automaton.Goto(selectedChild.state); var success = TryTreeSearchRec(rand, selectedChild, automaton, eval, treePolicy, out q); if (success) { // only update if successful treePolicy.Update(tree.actionStatistics, q); } tree.Done = tree.children.All(ch => ch.Done); if (tree.Done) { tree.children = null; // cut off the sub-branch if it has been fully explored } return success; } private static Tree SelectFinalOrRandom(Automaton automaton, Tree tree, IRandom rand) { // if one of the new children leads to a final state then go there // otherwise choose a random child int selectedChildIdx = -1; // find first final state if there is one for (int i = 0; i < tree.children.Length; i++) { if (automaton.IsFinalState(tree.children[i].state)) { selectedChildIdx = i; break; } } // no final state -> select a the first child if (selectedChildIdx == -1) { selectedChildIdx = 0; } return tree.children[selectedChildIdx]; } // scales data and extracts values from dataset into arrays private static void GenerateData(IRegressionProblemData problemData, bool scaleVariables, IEnumerable rows, out double[][] xs, out double[] y, out double[] scalingFactor, out double[] scalingOffset) { xs = new double[problemData.AllowedInputVariables.Count()][]; var i = 0; if (scaleVariables) { scalingFactor = new double[xs.Length]; scalingOffset = new double[xs.Length]; } else { scalingFactor = null; scalingOffset = null; } foreach (var var in problemData.AllowedInputVariables) { if (scaleVariables) { var minX = problemData.Dataset.GetDoubleValues(var, rows).Min(); var maxX = problemData.Dataset.GetDoubleValues(var, rows).Max(); var range = maxX - minX; // scaledX = (x - min) / range var sf = 1.0 / range; var offset = -minX / range; scalingFactor[i] = sf; scalingOffset[i] = offset; i++; } } GenerateData(problemData, rows, scalingFactor, scalingOffset, out xs, out y); } // extract values from dataset into arrays private static void GenerateData(IRegressionProblemData problemData, IEnumerable rows, double[] scalingFactor, double[] scalingOffset, out double[][] xs, out double[] y) { xs = new double[problemData.AllowedInputVariables.Count()][]; int i = 0; foreach (var var in problemData.AllowedInputVariables) { var sf = scalingFactor == null ? 1.0 : scalingFactor[i]; var offset = scalingFactor == null ? 0.0 : scalingOffset[i]; xs[i++] = problemData.Dataset.GetDoubleValues(var, rows).Select(xi => xi * sf + offset).ToArray(); } y = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows).ToArray(); } } }