#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Random;
namespace HeuristicLab.ExpressionGenerator {
///
/// Gamma distribution implemented after
/// "A Simple Method for Generating Gamma Variables" - Marsaglia & Tsang
/// ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000, Pages 363–372.
///
[Item("GammaDistributedRandom", "A pseudo random number generator for gamma distributed random numbers.")]
[StorableClass]
public sealed class GammaDistributedRandom : Item, IRandom {
[Storable]
private double shape;
public double Shape {
get { return shape; }
set { shape = value; }
}
[Storable]
private double rate;
public double Rate {
get { return rate; }
set { rate = value; }
}
[Storable]
private readonly IRandom random;
public GammaDistributedRandom() {
random = new MersenneTwister();
}
public GammaDistributedRandom(IRandom random, double shape, double rate) {
this.random = random;
this.shape = shape;
this.rate = rate;
}
[StorableConstructor]
private GammaDistributedRandom(bool deserializing) : base(deserializing) { }
private GammaDistributedRandom(GammaDistributedRandom original, Cloner cloner) : base(original, cloner) {
}
public override IDeepCloneable Clone(Cloner cloner) {
return new GammaDistributedRandom(this, cloner);
}
public void Reset() {
random.Reset();
}
public void Reset(int seed) {
random.Reset(seed);
}
public int Next() {
throw new NotImplementedException();
}
public int Next(int maxVal) {
throw new NotImplementedException();
}
public int Next(int minVal, int maxVal) {
throw new NotImplementedException();
}
public double NextDouble() {
return NextDouble(random, shape, rate);
}
///
/// Sample a value from a gamma distribution.
/// Implementation of "A Simple Method for Generating Gamma Variables" - Marsaglia & Tsang
/// ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000, Pages 363–372.
///
/// A uniformly-distributed random number generator.
/// The shape (k, α) of the Gamma distribution. Range: α ≥ 0.
/// The rate or inverse scale (β) of the Gamma distribution. Range: β ≥ 0.
/// A sample from a Gamma distributed random variable.
public static double NextDouble(IRandom uniformRandom, double shape, double rate) {
if (double.IsPositiveInfinity(rate)) {
return shape;
}
var a = 1d;
if (shape < 1) {
a = Math.Pow(uniformRandom.NextDouble(), 1 / shape);
shape += 1;
}
var d = shape - 1d / 3d;
var c = 1 / Math.Sqrt(9 * d);
for (;;) {
double v, x;
do {
x = NormalDistributedRandom.NextDouble(uniformRandom, 0, 1);
v = 1 + c * x;
} while (v <= 0);
v = v * v * v;
x = x * x; // save a multiplication below
var u = uniformRandom.NextDouble();
if (u < 1 - 0.0331 * x * x || Math.Log(u) < 0.5 * x + d * (1 - v + Math.Log(v)))
return a * d * v / rate;
}
}
}
}