#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.RealVectorEncoding;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.Instances;
namespace HeuristicLab.Problems.TestFunctions.MultiObjective {
[StorableClass]
[Creatable(CreatableAttribute.Categories.Problems, Priority = 95)]
[Item("Test Function (multi-objective)", "Test functions with real valued inputs and multiple objectives.")]
public class MultiObjectiveTestFunctionProblem : MultiObjectiveBasicProblem, IProblemInstanceConsumer {
#region Parameter Properties
public IValueParameter MaximizationParameter {
get { return (IValueParameter)Parameters["Maximization"]; }
}
public IFixedValueParameter ProblemSizeParameter {
get { return (IFixedValueParameter)Parameters["ProblemSize"]; }
}
public IFixedValueParameter ObjectivesParameter {
get { return (IFixedValueParameter)Parameters["Objectives"]; }
}
public IValueParameter BoundsParameter {
get { return (IValueParameter)Parameters["Bounds"]; }
}
public IValueParameter TestFunctionParameter {
get { return (IValueParameter)Parameters["TestFunction"]; }
}
public IValueParameter ReferencePointParameter {
get { return (IValueParameter)Parameters["ReferencePoint"]; }
}
public OptionalValueParameter BestKnownFrontParameter {
get { return (OptionalValueParameter)Parameters["BestKnownFront"]; }
}
#endregion
#region Properties
public override bool[] Maximization {
get {
if (!Parameters.ContainsKey("Maximization")) return new bool[2];
return MaximizationParameter.Value.ToArray();
}
}
public int ProblemSize {
get { return ProblemSizeParameter.Value.Value; }
set { ProblemSizeParameter.Value.Value = value; }
}
public int Objectives {
get { return ObjectivesParameter.Value.Value; }
set { ObjectivesParameter.Value.Value = value; }
}
public DoubleMatrix Bounds {
get { return BoundsParameter.Value; }
set { BoundsParameter.Value = value; }
}
public IMultiObjectiveTestFunction TestFunction {
get { return TestFunctionParameter.Value; }
set { TestFunctionParameter.Value = value; }
}
public DoubleArray ReferencePoint {
get { return ReferencePointParameter.Value; }
set { ReferencePointParameter.Value = value; }
}
public DoubleMatrix BestKnownFront {
get { return BestKnownFrontParameter.Value; }
set { BestKnownFrontParameter.Value = value; }
}
#endregion
[StorableConstructor]
protected MultiObjectiveTestFunctionProblem(bool deserializing) : base(deserializing) { }
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
RegisterEventHandlers();
}
protected MultiObjectiveTestFunctionProblem(MultiObjectiveTestFunctionProblem original, Cloner cloner)
: base(original, cloner) {
RegisterEventHandlers();
}
public override IDeepCloneable Clone(Cloner cloner) {
return new MultiObjectiveTestFunctionProblem(this, cloner);
}
public MultiObjectiveTestFunctionProblem()
: base() {
Parameters.Add(new FixedValueParameter("ProblemSize", "The dimensionality of the problem instance (number of variables in the function).", new IntValue(2)));
Parameters.Add(new FixedValueParameter("Objectives", "The dimensionality of the solution vector (number of objectives).", new IntValue(2)));
Parameters.Add(new ValueParameter("Bounds", "The bounds of the solution given as either one line for all variables or a line for each variable. The first column specifies lower bound, the second upper bound.", new DoubleMatrix(new double[,] { { -4, 4 } })));
Parameters.Add(new ValueParameter("ReferencePoint", "The reference point used for hypervolume calculation."));
Parameters.Add(new ValueParameter("TestFunction", "The function that is to be optimized.", new Fonseca()));
Parameters.Add(new OptionalValueParameter("BestKnownFront", "The currently best known Pareto front"));
Encoding.LengthParameter = ProblemSizeParameter;
Encoding.BoundsParameter = BoundsParameter;
BestKnownFrontParameter.Hidden = true;
UpdateParameterValues();
InitializeOperators();
RegisterEventHandlers();
}
private void RegisterEventHandlers() {
TestFunctionParameter.ValueChanged += TestFunctionParameterOnValueChanged;
ProblemSizeParameter.Value.ValueChanged += ProblemSizeOnValueChanged;
ObjectivesParameter.Value.ValueChanged += ObjectivesOnValueChanged;
}
public override void Analyze(Individual[] individuals, double[][] qualities, ResultCollection results, IRandom random) {
base.Analyze(individuals, qualities, results, random);
if (results.ContainsKey("Pareto Front")) {
((DoubleMatrix)results["Pareto Front"].Value).SortableView = true;
}
}
///
/// Checks whether a given solution violates the contraints of this function.
///
///
/// a double array that holds the distances that describe how much every contraint is violated (0 is not violated). If the current TestFunction does not have constraints an array of length 0 is returned
public double[] CheckContraints(RealVector individual) {
var constrainedTestFunction = (IConstrainedTestFunction)TestFunction;
if (constrainedTestFunction != null) {
return constrainedTestFunction.CheckConstraints(individual, Objectives);
}
return new double[0];
}
public double[] Evaluate(RealVector individual) {
return TestFunction.Evaluate(individual, Objectives);
}
public override double[] Evaluate(Individual individual, IRandom random) {
return Evaluate(individual.RealVector());
}
public void Load(MOTFData data) {
TestFunction = data.TestFunction;
}
#region Events
private void UpdateParameterValues() {
MaximizationParameter.Value = (BoolArray)new BoolArray(TestFunction.Maximization(Objectives)).AsReadOnly();
var front = TestFunction.OptimalParetoFront(Objectives);
if (front != null) {
BestKnownFrontParameter.Value = (DoubleMatrix)Utilities.ToMatrix(front).AsReadOnly();
} else BestKnownFrontParameter.Value = null;
BoundsParameter.Value = new DoubleMatrix(TestFunction.Bounds(Objectives));
ReferencePointParameter.Value = new DoubleArray(TestFunction.ReferencePoint(Objectives));
}
protected override void OnEncodingChanged() {
base.OnEncodingChanged();
UpdateParameterValues();
ParameterizeAnalyzers();
}
protected override void OnEvaluatorChanged() {
base.OnEvaluatorChanged();
UpdateParameterValues();
ParameterizeAnalyzers();
}
private void TestFunctionParameterOnValueChanged(object sender, EventArgs eventArgs) {
ProblemSize = Math.Max(TestFunction.MinimumSolutionLength, Math.Min(ProblemSize, TestFunction.MaximumSolutionLength));
Objectives = Math.Max(TestFunction.MinimumObjectives, Math.Min(Objectives, TestFunction.MaximumObjectives));
ReferencePointParameter.ActualValue = new DoubleArray(TestFunction.ReferencePoint(Objectives));
ParameterizeAnalyzers();
UpdateParameterValues();
OnReset();
}
private void ProblemSizeOnValueChanged(object sender, EventArgs eventArgs) {
ProblemSize = Math.Min(TestFunction.MaximumSolutionLength, Math.Max(TestFunction.MinimumSolutionLength, ProblemSize));
UpdateParameterValues();
}
private void ObjectivesOnValueChanged(object sender, EventArgs eventArgs) {
Objectives = Math.Min(TestFunction.MaximumObjectives, Math.Max(TestFunction.MinimumObjectives, Objectives));
UpdateParameterValues();
}
#endregion
#region Helpers
private void InitializeOperators() {
Operators.Add(new CrowdingAnalyzer());
Operators.Add(new GenerationalDistanceAnalyzer());
Operators.Add(new InvertedGenerationalDistanceAnalyzer());
Operators.Add(new HypervolumeAnalyzer());
Operators.Add(new SpacingAnalyzer());
Operators.Add(new ScatterPlotAnalyzer());
ParameterizeAnalyzers();
}
private IEnumerable Analyzers {
get { return Operators.OfType(); }
}
private void ParameterizeAnalyzers() {
foreach (var analyzer in Analyzers) {
analyzer.ResultsParameter.ActualName = "Results";
analyzer.QualitiesParameter.ActualName = Evaluator.QualitiesParameter.ActualName;
analyzer.TestFunctionParameter.ActualName = TestFunctionParameter.Name;
analyzer.BestKnownFrontParameter.ActualName = BestKnownFrontParameter.Name;
var crowdingAnalyzer = analyzer as CrowdingAnalyzer;
if (crowdingAnalyzer != null) {
crowdingAnalyzer.BoundsParameter.ActualName = BoundsParameter.Name;
}
var scatterPlotAnalyzer = analyzer as ScatterPlotAnalyzer;
if (scatterPlotAnalyzer != null) {
scatterPlotAnalyzer.IndividualsParameter.ActualName = Encoding.Name;
}
}
}
#endregion
}
}