#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Optimization;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.Programmable {
[Item("Single-objective Problem Definition Script", "Script that defines the parameter vector and evaluates the solution for a programmable problem.")]
[StorableClass]
public sealed class SingleObjectiveProblemDefinitionScript : ProblemDefinitionScript, ISingleObjectiveProblemDefinition, IStorableContent {
public string Filename { get; set; }
private new ISingleObjectiveProblemDefinition CompiledProblemDefinition {
get { return (ISingleObjectiveProblemDefinition)base.CompiledProblemDefinition; }
}
[StorableConstructor]
private SingleObjectiveProblemDefinitionScript(bool deserializing) : base(deserializing) { }
private SingleObjectiveProblemDefinitionScript(SingleObjectiveProblemDefinitionScript original, Cloner cloner) : base(original, cloner) { }
public SingleObjectiveProblemDefinitionScript() : base(ScriptTemplates.CompiledSingleObjectiveProblemDefinition) { }
public override IDeepCloneable Clone(Cloner cloner) {
return new SingleObjectiveProblemDefinitionScript(this, cloner);
}
bool ISingleObjectiveProblemDefinition.Maximization {
get { return CompiledProblemDefinition.Maximization; }
}
double ISingleObjectiveProblemDefinition.Evaluate(Individual individual, IRandom random) {
return CompiledProblemDefinition.Evaluate(individual, random);
}
void ISingleObjectiveProblemDefinition.Analyze(Individual[] individuals, double[] qualities, ResultCollection results, IRandom random) {
CompiledProblemDefinition.Analyze(individuals, qualities, results, random);
}
IEnumerable ISingleObjectiveProblemDefinition.GetNeighbors(Individual individual, IRandom random) {
return CompiledProblemDefinition.GetNeighbors(individual, random);
}
}
}