#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis {
[StorableClass]
[Item("SymbolicTimeSeriesPrognosisInterpreter", "Interpreter for symbolic expression trees including automatically defined functions.")]
public sealed class SymbolicTimeSeriesPrognosisExpressionTreeInterpreter : SymbolicDataAnalysisExpressionTreeInterpreter, ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter {
private const string TargetVariableParameterName = "TargetVariable";
public IFixedValueParameter TargetVariableParameter {
get { return (IFixedValueParameter)Parameters[TargetVariableParameterName]; }
}
public string TargetVariable {
get { return TargetVariableParameter.Value.Value; }
set { TargetVariableParameter.Value.Value = value; }
}
[StorableConstructor]
private SymbolicTimeSeriesPrognosisExpressionTreeInterpreter(bool deserializing) : base(deserializing) { }
private SymbolicTimeSeriesPrognosisExpressionTreeInterpreter(SymbolicTimeSeriesPrognosisExpressionTreeInterpreter original, Cloner cloner) : base(original, cloner) { }
public override IDeepCloneable Clone(Cloner cloner) {
return new SymbolicTimeSeriesPrognosisExpressionTreeInterpreter(this, cloner);
}
internal SymbolicTimeSeriesPrognosisExpressionTreeInterpreter()
: base("SymbolicTimeSeriesPrognosisInterpreter", "Interpreter for symbolic expression trees including automatically defined functions.") {
Parameters.Add(new FixedValueParameter(TargetVariableParameterName));
TargetVariableParameter.Hidden = true;
}
public SymbolicTimeSeriesPrognosisExpressionTreeInterpreter(string targetVariable)
: this() {
TargetVariable = targetVariable;
}
// for each row several (=#horizon) future predictions
public IEnumerable> GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, IDataset dataset, IEnumerable rows, int horizon) {
return GetSymbolicExpressionTreeValues(tree, dataset, rows, rows.Select(row => horizon));
}
private readonly object syncRoot = new object();
public IEnumerable> GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, IDataset dataset, IEnumerable rows, IEnumerable horizons) {
if (CheckExpressionsWithIntervalArithmetic)
throw new NotSupportedException("Interval arithmetic is not yet supported in the symbolic data analysis interpreter.");
string targetVariable = TargetVariable;
double[] targetVariableCache = dataset.GetDoubleValues(targetVariable).ToArray();
lock (syncRoot) {
EvaluatedSolutions++; // increment the evaluated solutions counter
}
var state = PrepareInterpreterState(tree, dataset, targetVariableCache, TargetVariable);
var rowsEnumerator = rows.GetEnumerator();
var horizonsEnumerator = horizons.GetEnumerator();
// produce a n-step forecast for all rows
while (rowsEnumerator.MoveNext() & horizonsEnumerator.MoveNext()) {
int row = rowsEnumerator.Current;
int horizon = horizonsEnumerator.Current;
double[] vProgs = new double[horizon];
for (int i = 0; i < horizon; i++) {
int localRow = i + row; // create a local variable for the ref parameter
vProgs[i] = Evaluate(dataset, ref localRow, state);
targetVariableCache[localRow] = vProgs[i];
state.Reset();
}
yield return vProgs;
}
if (rowsEnumerator.MoveNext() || horizonsEnumerator.MoveNext())
throw new ArgumentException("Number of elements in rows and horizon enumerations doesn't match.");
}
private static InterpreterState PrepareInterpreterState(ISymbolicExpressionTree tree, IDataset dataset, double[] targetVariableCache, string targetVariable) {
Instruction[] code = SymbolicExpressionTreeCompiler.Compile(tree, OpCodes.MapSymbolToOpCode);
int necessaryArgStackSize = 0;
foreach (Instruction instr in code) {
if (instr.opCode == OpCodes.Variable) {
var variableTreeNode = (VariableTreeNode)instr.dynamicNode;
if (variableTreeNode.VariableName == targetVariable)
instr.data = targetVariableCache;
else
instr.data = dataset.GetReadOnlyDoubleValues(variableTreeNode.VariableName);
} else if (instr.opCode == OpCodes.LagVariable) {
var variableTreeNode = (LaggedVariableTreeNode)instr.dynamicNode;
if (variableTreeNode.VariableName == targetVariable)
instr.data = targetVariableCache;
else
instr.data = dataset.GetReadOnlyDoubleValues(variableTreeNode.VariableName);
} else if (instr.opCode == OpCodes.VariableCondition) {
var variableTreeNode = (VariableConditionTreeNode)instr.dynamicNode;
if (variableTreeNode.VariableName == targetVariable)
instr.data = targetVariableCache;
else
instr.data = dataset.GetReadOnlyDoubleValues(variableTreeNode.VariableName);
} else if (instr.opCode == OpCodes.Call) {
necessaryArgStackSize += instr.nArguments + 1;
}
}
return new InterpreterState(code, necessaryArgStackSize);
}
}
}