1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections;
|
---|
24 | using System.Collections.Generic;
|
---|
25 | using System.Diagnostics.Eventing.Reader;
|
---|
26 | using System.Linq;
|
---|
27 | using System.Text;
|
---|
28 | using HeuristicLab.Common;
|
---|
29 | using HeuristicLab.Core;
|
---|
30 | using HeuristicLab.Data;
|
---|
31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.VariableInteractionNetworks {
|
---|
34 | [Item("VariableInteractionNetwork", "A graph representation of variables and their relationships.")]
|
---|
35 | [StorableClass]
|
---|
36 | public class VariableInteractionNetwork : DirectedGraph {
|
---|
37 |
|
---|
38 | /// <summary>
|
---|
39 | /// Creates a simple network from a matrix of variable impacts (each row represents a target variable, each column represents an input variable)
|
---|
40 | /// For each target variable not more than one row can be defined (no junction nodes are build, cf. FromNmseAndVariableImpacts(..) for building more complex networks).
|
---|
41 | /// The network is acyclic. Values in the diagonal are ignored.
|
---|
42 | /// The algorithm starts with an empty network and incrementally adds next most relevant input variable for each target variable up to a given threshold
|
---|
43 | /// In each iteration cycles are broken by removing the weakest link.
|
---|
44 | /// </summary>
|
---|
45 | /// <param name="nmse">vector of NMSE values for each target variable</param>
|
---|
46 | /// <param name="variableImpacts">Variable impacts (smaller is lower impact). Row names and columns names should be set</param>
|
---|
47 | /// <param name="nmseThreshold">Threshold for NMSE values. Variables with a NMSE value larger than the threshold are considered as independent variables</param>
|
---|
48 | /// <param name="varImpactThreshold">Threshold for variable impact values. Impacts with a value smaller than the threshold are considered as independent</param>
|
---|
49 | /// <returns></returns>
|
---|
50 | public static VariableInteractionNetwork CreateSimpleNetwork(double[] nmse, DoubleMatrix variableImpacts, double nmseThreshold = 0.2, double varImpactThreshold = 0.0) {
|
---|
51 | if (variableImpacts.Rows != variableImpacts.Columns) throw new ArgumentException();
|
---|
52 | var network = new VariableInteractionNetwork();
|
---|
53 | var targets = new Dictionary<string, double>();
|
---|
54 | string[] varNames = variableImpacts.RowNames.ToArray();
|
---|
55 | if (nmse.Length != varNames.Length) throw new ArgumentException();
|
---|
56 |
|
---|
57 | for (int i = 0; i < varNames.Length; i++) {
|
---|
58 | var name = varNames[i];
|
---|
59 | var varVertex = new VariableNetworkNode() {Label = name, Weight = nmse[i]};
|
---|
60 | network.AddVertex(varVertex);
|
---|
61 | if (nmse[i] < nmseThreshold) {
|
---|
62 | targets.Add(name, nmse[i]);
|
---|
63 | }
|
---|
64 | }
|
---|
65 |
|
---|
66 | // rel is updated (impacts which are represented in the network are set to zero)
|
---|
67 | var rel = variableImpacts.CloneAsMatrix();
|
---|
68 | // make sure the diagonal is not considered
|
---|
69 | for (int i = 0; i < rel.GetLength(0); i++) rel[i, i] = double.NegativeInfinity;
|
---|
70 |
|
---|
71 | var addedArcs = AddArcs(network, rel, varNames, targets, varImpactThreshold);
|
---|
72 | while (addedArcs.Any()) {
|
---|
73 | var cycles = network.FindShortestCycles().ToList();
|
---|
74 | while (cycles.Any()) {
|
---|
75 | // delete weakest link
|
---|
76 | var weakestArc = cycles.SelectMany(cycle => network.ArcsForCycle(cycle)).OrderBy(a => a.Weight).First();
|
---|
77 | network.RemoveArc(weakestArc);
|
---|
78 |
|
---|
79 | cycles = network.FindShortestCycles().ToList();
|
---|
80 | }
|
---|
81 |
|
---|
82 | addedArcs = AddArcs(network, rel, varNames, targets, varImpactThreshold);
|
---|
83 | }
|
---|
84 |
|
---|
85 | return network;
|
---|
86 | }
|
---|
87 |
|
---|
88 | private static List<IArc> AddArcs(VariableInteractionNetwork network, double[,] impacts, string[] varNames, Dictionary<string, double> targets, double threshold = 0.0) {
|
---|
89 | var newArcs = new List<IArc>();
|
---|
90 | for (int row = 0; row < impacts.GetLength(0); row++) {
|
---|
91 | if (!targets.ContainsKey(varNames[row])) continue;
|
---|
92 |
|
---|
93 | var rowVector = Enumerable.Range(0, impacts.GetLength(0)).Select(col => impacts[row, col]).ToArray();
|
---|
94 | var max = rowVector.Max();
|
---|
95 | if (max > threshold) {
|
---|
96 | var idxOfMax = Array.IndexOf<double>(rowVector, max);
|
---|
97 | impacts[row, idxOfMax] = double.NegativeInfinity;
|
---|
98 | var srcName = varNames[idxOfMax];
|
---|
99 | var dstName = varNames[row];
|
---|
100 | var srcVertex = network.Vertices.Single(v => v.Label == srcName);
|
---|
101 | var dstVertex = network.Vertices.Single(v => v.Label == dstName);
|
---|
102 | var arc = network.AddArc(srcVertex, dstVertex);
|
---|
103 | arc.Weight = max;
|
---|
104 | newArcs.Add(arc);
|
---|
105 | }
|
---|
106 | }
|
---|
107 |
|
---|
108 | return newArcs;
|
---|
109 | }
|
---|
110 |
|
---|
111 | /// <summary>
|
---|
112 | /// Creates a network from a matrix of variable impacts (each row represents a target variable, each column represents an input variable)
|
---|
113 | /// The network is acyclic. Values in the diagonal are ignored.
|
---|
114 | /// The algorithm starts with an empty network and incrementally adds next most relevant input variable for each target variable up to a given threshold
|
---|
115 | /// In each iteration cycles are broken by removing the weakest link.
|
---|
116 | /// </summary>
|
---|
117 | /// <param name="nmse">vector of NMSE values for each target variable</param>
|
---|
118 | /// <param name="variableImpacts">Variable impacts (smaller is lower impact). Row names and columns names should be set</param>
|
---|
119 | /// <param name="nmseThreshold">Threshold for NMSE values. Variables with a NMSE value larger than the threshold are considered as independent variables</param>
|
---|
120 | /// <param name="varImpactThreshold">Threshold for variable impact values. Impacts with a value smaller than the threshold are considered as independent</param>
|
---|
121 | /// <returns></returns>
|
---|
122 | public static VariableInteractionNetwork FromNmseAndVariableImpacts(double[] nmse, DoubleMatrix variableImpacts, double nmseThreshold = 0.2, double varImpactThreshold = 0.0) {
|
---|
123 | if (variableImpacts.Rows != variableImpacts.Columns) throw new ArgumentException();
|
---|
124 | var network = new VariableInteractionNetwork();
|
---|
125 |
|
---|
126 | Dictionary<string, IVertex> name2funVertex = new Dictionary<string, IVertex>(); // store vertexes representing the function for each target so we can easily add incoming arcs later on
|
---|
127 | string[] varNames = variableImpacts.RowNames.ToArray();
|
---|
128 | if (nmse.Length != varNames.Length) throw new ArgumentException();
|
---|
129 |
|
---|
130 | for (int i = 0; i < varNames.Length; i++) {
|
---|
131 | var name = varNames[i];
|
---|
132 | var varVertex = new VariableNetworkNode() { Label = name };
|
---|
133 | network.AddVertex(varVertex);
|
---|
134 | if (nmse[i] < nmseThreshold) {
|
---|
135 | var functionVertex = new JunctionNetworkNode() { Label = "f_" + name };
|
---|
136 | name2funVertex.Add(name, functionVertex);
|
---|
137 | network.AddVertex(functionVertex);
|
---|
138 | var predArc = network.AddArc(functionVertex, varVertex);
|
---|
139 | predArc.Weight = double.PositiveInfinity; // never delete arcs from f_x -> x (representing output of a function)
|
---|
140 | }
|
---|
141 | }
|
---|
142 |
|
---|
143 | // rel is updated (impacts which are represented in the network are set to zero)
|
---|
144 | var rel = variableImpacts.CloneAsMatrix();
|
---|
145 | // make sure the diagonal is not considered
|
---|
146 | for (int i = 0; i < rel.GetLength(0); i++) rel[i, i] = double.NegativeInfinity;
|
---|
147 |
|
---|
148 | var addedArcs = AddArcs(network, rel, varNames, name2funVertex, varImpactThreshold);
|
---|
149 | while (addedArcs.Any()) {
|
---|
150 | var cycles = network.FindShortestCycles().ToList();
|
---|
151 | while (cycles.Any()) {
|
---|
152 | // delete weakest link
|
---|
153 | var weakestArc = cycles.SelectMany(cycle => network.ArcsForCycle(cycle)).OrderBy(a => a.Weight).First();
|
---|
154 | network.RemoveArc(weakestArc);
|
---|
155 |
|
---|
156 | cycles = network.FindShortestCycles().ToList();
|
---|
157 | }
|
---|
158 |
|
---|
159 | addedArcs = AddArcs(network, rel, varNames, name2funVertex, varImpactThreshold);
|
---|
160 | }
|
---|
161 |
|
---|
162 | return network;
|
---|
163 | }
|
---|
164 |
|
---|
165 | /// <summary>
|
---|
166 | /// Produces a combined network from two networks.
|
---|
167 | /// The set of nodes of the new network is the union of the node sets of the two input networks.
|
---|
168 | /// The set of edges of the new network is the union of the edge sets of the two input networks.
|
---|
169 | /// Added and removed nodes and edges are marked so that it is possible to visualize the network difference using graphviz
|
---|
170 | /// </summary>
|
---|
171 | /// <returns></returns>
|
---|
172 | public static VariableInteractionNetwork CalculateNetworkDiff(
|
---|
173 | VariableInteractionNetwork from,
|
---|
174 | VariableInteractionNetwork to) {
|
---|
175 | var g = new VariableInteractionNetwork();
|
---|
176 |
|
---|
177 | // add nodes which are in both networks
|
---|
178 | foreach (var node in from.Vertices.Intersect(to.Vertices, new VertexLabelComparer())) {
|
---|
179 | g.AddVertex((IVertex)node.Clone());
|
---|
180 | }
|
---|
181 | // add nodes only in from network
|
---|
182 | foreach (var node in from.Vertices.Except(to.Vertices, new VertexLabelComparer())) {
|
---|
183 | var fromVertex = (IVertex)node.Clone();
|
---|
184 | fromVertex.Label += " (removed)";
|
---|
185 | g.AddVertex(fromVertex);
|
---|
186 | }
|
---|
187 | // add nodes only in to network
|
---|
188 | foreach (var node in to.Vertices.Except(from.Vertices, new VertexLabelComparer())) {
|
---|
189 | var fromVertex = (IVertex)node.Clone();
|
---|
190 | fromVertex.Label += " (added)";
|
---|
191 | g.AddVertex(fromVertex);
|
---|
192 | }
|
---|
193 |
|
---|
194 | // add edges which are in both networks
|
---|
195 | foreach (var arc in from.Arcs.Intersect(to.Arcs, new ArcComparer())) {
|
---|
196 | g.AddArc(
|
---|
197 | g.Vertices.Single(v => arc.Source.Label == v.Label),
|
---|
198 | g.Vertices.Single(v => arc.Target.Label == v.Label)
|
---|
199 | );
|
---|
200 | }
|
---|
201 | // add edges only in from network
|
---|
202 | foreach (var arc in from.Arcs.Except(to.Arcs, new ArcComparer())) {
|
---|
203 | var fromVertex =
|
---|
204 | g.Vertices.Single(v => v.Label == arc.Source.Label || v.Label == arc.Source.Label + " (removed)");
|
---|
205 | var toVertex =
|
---|
206 | g.Vertices.Single(v => v.Label == arc.Target.Label || v.Label == arc.Target.Label + " (removed)");
|
---|
207 | var newArc = g.AddArc(
|
---|
208 | fromVertex,
|
---|
209 | toVertex
|
---|
210 | );
|
---|
211 | newArc.Label += " (removed)";
|
---|
212 | }
|
---|
213 | // add arcs only in to network
|
---|
214 | foreach (var arc in to.Arcs.Except(from.Arcs, new ArcComparer())) {
|
---|
215 | var fromVertex =
|
---|
216 | g.Vertices.Single(v => v.Label == arc.Source.Label || v.Label == arc.Source.Label + " (added)");
|
---|
217 | var toVertex =
|
---|
218 | g.Vertices.Single(v => v.Label == arc.Target.Label || v.Label == arc.Target.Label + " (added)");
|
---|
219 | var newArc = g.AddArc(
|
---|
220 | fromVertex,
|
---|
221 | toVertex
|
---|
222 | );
|
---|
223 | newArc.Label += " (added)";
|
---|
224 | }
|
---|
225 | return g;
|
---|
226 | }
|
---|
227 |
|
---|
228 |
|
---|
229 | private static List<IArc> AddArcs(VariableInteractionNetwork network, double[,] impacts, string[] varNames, Dictionary<string, IVertex> name2funVertex, double threshold = 0.0) {
|
---|
230 | var newArcs = new List<IArc>();
|
---|
231 | for (int row = 0; row < impacts.GetLength(0); row++) {
|
---|
232 | if (!name2funVertex.ContainsKey(varNames[row])) continue; // this variable does not have an associated function (considered as independent)
|
---|
233 |
|
---|
234 | var rowVector = Enumerable.Range(0, impacts.GetLength(0)).Select(col => impacts[row, col]).ToArray();
|
---|
235 | var max = rowVector.Max();
|
---|
236 | if (max > threshold) {
|
---|
237 | var idxOfMax = Array.IndexOf<double>(rowVector, max);
|
---|
238 | impacts[row, idxOfMax] = double.NegativeInfinity; // edge is not considered anymore
|
---|
239 | var srcName = varNames[idxOfMax];
|
---|
240 | var dstName = varNames[row];
|
---|
241 | var vertex = network.Vertices.Single(v => v.Label == srcName);
|
---|
242 | var arc = network.AddArc(vertex, name2funVertex[dstName]);
|
---|
243 | arc.Weight = max;
|
---|
244 | newArcs.Add(arc);
|
---|
245 | }
|
---|
246 | }
|
---|
247 | return newArcs;
|
---|
248 | }
|
---|
249 |
|
---|
250 | [StorableConstructor]
|
---|
251 | public VariableInteractionNetwork(bool deserializing) : base(deserializing) { }
|
---|
252 |
|
---|
253 | public VariableInteractionNetwork() { }
|
---|
254 |
|
---|
255 | protected VariableInteractionNetwork(VariableInteractionNetwork original, Cloner cloner) : base(original, cloner) { }
|
---|
256 |
|
---|
257 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
258 | return new VariableInteractionNetwork(this, cloner);
|
---|
259 | }
|
---|
260 | private IList<IArc> ArcsForCycle(IList<IVertex> cycle) {
|
---|
261 | var res = new List<IArc>();
|
---|
262 | foreach (var t in cycle.Zip(cycle.Skip(1), Tuple.Create)) {
|
---|
263 | var src = t.Item1;
|
---|
264 | var dst = t.Item2;
|
---|
265 | var arc = Arcs.Single(a => a.Source == src && a.Target == dst);
|
---|
266 | res.Add(arc);
|
---|
267 | }
|
---|
268 | return res;
|
---|
269 | }
|
---|
270 |
|
---|
271 |
|
---|
272 | // finds the shortest cycles in the graph and returns all sub-graphs containing only the nodes / edges within the cycle
|
---|
273 | public IEnumerable<IList<IVertex>> FindShortestCycles() {
|
---|
274 | foreach (var startVariable in base.Vertices.OfType<VariableNetworkNode>()) {
|
---|
275 | foreach (var cycle in FindShortestCycles(startVariable))
|
---|
276 | yield return cycle;
|
---|
277 | }
|
---|
278 | }
|
---|
279 |
|
---|
280 | private IEnumerable<IList<IVertex>> FindShortestCycles(VariableNetworkNode startVariable) {
|
---|
281 | var q = new Queue<List<IVertex>>(); // queue of paths
|
---|
282 | var path = new List<IVertex>();
|
---|
283 | var cycles = new List<List<IVertex>>();
|
---|
284 | var maxPathLength = base.Vertices.Count();
|
---|
285 |
|
---|
286 | path.Add(startVariable);
|
---|
287 | q.Enqueue(new List<IVertex>(path));
|
---|
288 |
|
---|
289 | FindShortestCycles(q, maxPathLength, cycles);
|
---|
290 | return cycles;
|
---|
291 | }
|
---|
292 |
|
---|
293 | // TODO efficiency
|
---|
294 | private void FindShortestCycles(Queue<List<IVertex>> queue, int maxPathLength, List<List<IVertex>> cycles) {
|
---|
295 | while (queue.Any()) {
|
---|
296 | var path = queue.Dequeue();
|
---|
297 | if (path.Count > 1 && path.First() == path.Last()) {
|
---|
298 | cycles.Add(new List<IVertex>(path)); // found a cycle
|
---|
299 | } else if (path.Count >= maxPathLength) {
|
---|
300 | continue;
|
---|
301 | } else {
|
---|
302 | var lastVert = path.Last();
|
---|
303 | var neighbours = base.Arcs.Where(a => a.Source == lastVert).Select(a => a.Target);
|
---|
304 | foreach (var neighbour in neighbours) {
|
---|
305 | queue.Enqueue(new List<IVertex>(path.Concat(new IVertex[] { neighbour })));
|
---|
306 | }
|
---|
307 | }
|
---|
308 | }
|
---|
309 | }
|
---|
310 |
|
---|
311 | public DoubleMatrix GetWeightsMatrix() {
|
---|
312 | var names = Vertices.OfType<VariableNetworkNode>()
|
---|
313 | .Select(v => v.Label)
|
---|
314 | .OrderBy(s => s, new NaturalStringComparer()).ToArray();
|
---|
315 | var w = new double[names.Length, names.Length];
|
---|
316 |
|
---|
317 | var name2idx = new Dictionary<string, int>();
|
---|
318 | for (int i = 0; i < names.Length; i++) {
|
---|
319 | name2idx.Add(names[i], i);
|
---|
320 | }
|
---|
321 |
|
---|
322 | foreach (var arc in Arcs) {
|
---|
323 | // only consider arcs going into a junction node
|
---|
324 | var target = arc.Target as JunctionNetworkNode;
|
---|
325 | if (target != null) {
|
---|
326 | var srcVarName = arc.Source.Label;
|
---|
327 | // each function node must have exactly one outgoing arc
|
---|
328 | var dstVarName = arc.Target.OutArcs.Single().Target.Label;
|
---|
329 |
|
---|
330 | w[name2idx[dstVarName], name2idx[srcVarName]] = arc.Weight;
|
---|
331 | }
|
---|
332 | }
|
---|
333 |
|
---|
334 |
|
---|
335 | return new DoubleMatrix(w, names, names);
|
---|
336 | }
|
---|
337 |
|
---|
338 | public DoubleMatrix GetSimpleWeightsMatrix() {
|
---|
339 | var names = Vertices.OfType<VariableNetworkNode>()
|
---|
340 | .Select(v => v.Label)
|
---|
341 | .OrderBy(s => s, new NaturalStringComparer()).ToArray();
|
---|
342 | var w = new double[names.Length, names.Length];
|
---|
343 |
|
---|
344 | var name2idx = new Dictionary<string, int>();
|
---|
345 | for (int i = 0; i < names.Length; i++) {
|
---|
346 | name2idx.Add(names[i], i);
|
---|
347 | }
|
---|
348 |
|
---|
349 | foreach (var arc in Arcs) {
|
---|
350 | if (arc.Target != null) {
|
---|
351 | var srcVarName = arc.Source.Label;
|
---|
352 | var dstVarName = arc.Target.Label;
|
---|
353 | w[name2idx[dstVarName], name2idx[srcVarName]] = arc.Weight;
|
---|
354 | }
|
---|
355 | }
|
---|
356 |
|
---|
357 | return new DoubleMatrix(w, names, names);
|
---|
358 | }
|
---|
359 |
|
---|
360 | public string ToGraphVizString() {
|
---|
361 | Func<string, string> NodeAndEdgeColor = (str) =>
|
---|
362 | {
|
---|
363 | if (string.IsNullOrEmpty(str)) return "black";
|
---|
364 | else if (str.Contains("removed")) return "red";
|
---|
365 | else if (str.Contains("added")) return "green";
|
---|
366 | else return "black";
|
---|
367 | };
|
---|
368 |
|
---|
369 | var sb = new StringBuilder();
|
---|
370 | sb.AppendLine("digraph {");
|
---|
371 | sb.AppendLine("rankdir=LR");
|
---|
372 | foreach (var v in Vertices.OfType<VariableNetworkNode>()) {
|
---|
373 | sb.AppendFormat("\"{0}\" [shape=oval, color={1}]", v.Label, NodeAndEdgeColor(v.Label)).AppendLine();
|
---|
374 | }
|
---|
375 | foreach (var v in Vertices.OfType<JunctionNetworkNode>()) {
|
---|
376 | sb.AppendFormat("\"{0}\" [shape=box, color={1}]", v.Label, NodeAndEdgeColor(v.Label)).AppendLine();
|
---|
377 | }
|
---|
378 | foreach (var arc in Arcs) {
|
---|
379 | sb.AppendFormat("\"{0}\"->\"{1}\" [color=\"{3}\"]", arc.Source.Label, arc.Target.Label, arc.Label, NodeAndEdgeColor(arc.Label)).AppendLine();
|
---|
380 | }
|
---|
381 | sb.AppendLine("}");
|
---|
382 | return sb.ToString();
|
---|
383 | }
|
---|
384 | }
|
---|
385 |
|
---|
386 | public class VertexLabelComparer : IEqualityComparer<IVertex> {
|
---|
387 | public bool Equals(IVertex x, IVertex y) {
|
---|
388 | if (x == null && y == null) return true;
|
---|
389 | if (x != null && y != null) {
|
---|
390 | return x.Label == y.Label;
|
---|
391 | } else return false;
|
---|
392 | }
|
---|
393 |
|
---|
394 | public int GetHashCode(IVertex obj) {
|
---|
395 | return obj.Label.GetHashCode();
|
---|
396 | }
|
---|
397 | }
|
---|
398 |
|
---|
399 | public class ArcComparer : IEqualityComparer<IArc> {
|
---|
400 | public bool Equals(IArc x, IArc y) {
|
---|
401 | if (x == null && y == null) return true;
|
---|
402 | if (x != null && y != null) {
|
---|
403 | return x.Source.Label == y.Source.Label && x.Target.Label == y.Target.Label;
|
---|
404 | } else return false;
|
---|
405 | }
|
---|
406 |
|
---|
407 | public int GetHashCode(IArc obj) {
|
---|
408 | return obj.Source.Label.GetHashCode() ^ obj.Target.Label.GetHashCode();
|
---|
409 | }
|
---|
410 | }
|
---|
411 |
|
---|
412 | [Item("VariableNetworkNode", "A graph vertex which represents a symbolic regression variable.")]
|
---|
413 | [StorableClass]
|
---|
414 | public class VariableNetworkNode : Vertex<IDeepCloneable>, INetworkNode {
|
---|
415 | public VariableNetworkNode() {
|
---|
416 | Id = Guid.NewGuid().ToString();
|
---|
417 | }
|
---|
418 |
|
---|
419 | public VariableNetworkNode(VariableNetworkNode original, Cloner cloner) : base(original, cloner) {
|
---|
420 | Id = original.Id;
|
---|
421 | Description = original.Description;
|
---|
422 | }
|
---|
423 |
|
---|
424 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
425 | return new VariableNetworkNode(this, cloner);
|
---|
426 | }
|
---|
427 |
|
---|
428 | public string Id { get; }
|
---|
429 | public string Description { get; set; }
|
---|
430 | }
|
---|
431 |
|
---|
432 | [Item("FunctionNetworkNode", "A graph vertex representing a junction node.")]
|
---|
433 | [StorableClass]
|
---|
434 | public class JunctionNetworkNode : Vertex<IDeepCloneable>, INetworkNode {
|
---|
435 | public JunctionNetworkNode() {
|
---|
436 | Id = Guid.NewGuid().ToString();
|
---|
437 | }
|
---|
438 |
|
---|
439 | public JunctionNetworkNode(JunctionNetworkNode original, Cloner cloner) : base(original, cloner) {
|
---|
440 | Id = original.Id;
|
---|
441 | Description = original.Description;
|
---|
442 | }
|
---|
443 |
|
---|
444 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
445 | return new JunctionNetworkNode(this, cloner);
|
---|
446 | }
|
---|
447 |
|
---|
448 | public string Id { get; }
|
---|
449 | public string Description { get; set; }
|
---|
450 | }
|
---|
451 | }
|
---|