#region License Information
/* HeuristicLab
* Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
//Code is based on an implementation from Laurens van der Maaten
/*
*
* Copyright (c) 2014, Laurens van der Maaten (Delft University of Technology)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the Delft University of Technology.
* 4. Neither the name of the Delft University of Technology nor the names of
* its contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY LAURENS VAN DER MAATEN ''AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL LAURENS VAN DER MAATEN BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*
*/
#endregion
using System;
using System.Collections.Generic;
namespace HeuristicLab.Algorithms.DataAnalysis {
///
/// Space partitioning tree (SPTree)
///
internal class SpacePartitioningTree {
private const uint QtNodeCapacity = 1;
#region Fields
private int dimension;
private bool isLeaf;
private uint size;
private uint cumulativeSize;
// Axis-aligned bounding box stored as a center with half-dimensions to represent the boundaries of this quad tree
private Cell boundary;
private double[,] data;
// Indices in this space-partitioning tree node, corresponding center-of-mass, and list of all children
private double[] centerOfMass;
private readonly int[] index = new int[QtNodeCapacity];
// Children
private SpacePartitioningTree[] children;
private uint noChildren;
#endregion
public SpacePartitioningTree(double[,] inpData) {
var d = inpData.GetLength(1);
var n = inpData.GetLength(0);
var meanY = new double[d];
var minY = new double[d];
for (var i = 0; i < d; i++) minY[i] = double.MaxValue;
var maxY = new double[d];
for (var i = 0; i < d; i++) maxY[i] = double.MinValue;
for (uint i = 0; i < n; i++) {
for (uint j = 0; j < d; j++) {
meanY[j] += inpData[i, j];
if (inpData[i, j] < minY[j]) minY[j] = inpData[i, j];
if (inpData[i, j] > maxY[j]) maxY[j] = inpData[i, j];
}
}
for (var i = 0; i < d; i++) meanY[i] /= n;
var width = new double[d];
for (var i = 0; i < d; i++) width[i] = Math.Max(maxY[i] - meanY[i], meanY[i] - minY[i]) + 1e-5;
Init(inpData, meanY, width);
Fill(n);
}
private SpacePartitioningTree(double[,] inpData, IEnumerable impCorner, IEnumerable impWith) {
Init(inpData, impCorner, impWith);
}
public bool Insert(int newIndex) {
// Ignore objects which do not belong in this quad tree
var point = new double[dimension];
Buffer.BlockCopy(data, sizeof(double) * dimension * newIndex, point, 0, sizeof(double) * dimension);
if (!boundary.ContainsPoint(point)) return false;
cumulativeSize++;
// Online update of cumulative size and center-of-mass
var mult1 = (double)(cumulativeSize - 1) / cumulativeSize;
var mult2 = 1.0 / cumulativeSize;
for (var i = 0; i < dimension; i++) centerOfMass[i] *= mult1;
for (var i = 0; i < dimension; i++) centerOfMass[i] += mult2 * point[i];
// If there is space in this quad tree and it is a leaf, add the object here
if (isLeaf && size < QtNodeCapacity) {
index[size] = newIndex;
size++;
return true;
}
// Don't add duplicates
var anyDuplicate = false;
for (uint n = 0; n < size; n++) {
var duplicate = true;
for (var d = 0; d < dimension; d++) {
if (Math.Abs(point[d] - data[index[n], d]) < double.Epsilon) continue;
duplicate = false; break;
}
anyDuplicate = anyDuplicate | duplicate;
}
if (anyDuplicate) return true;
// Otherwise, we need to subdivide the current cell
if (isLeaf) Subdivide();
// Find out where the point can be inserted
for (var i = 0; i < noChildren; i++) {
if (children[i].Insert(newIndex)) return true;
}
// Otherwise, the point cannot be inserted (this should never happen)
return false;
}
public void ComputeNonEdgeForces(int pointIndex, double theta, double[] negF, ref double sumQ) {
// Make sure that we spend no time on empty nodes or self-interactions
if (cumulativeSize == 0 || (isLeaf && size == 1 && index[0] == pointIndex)) return;
// Compute distance between point and center-of-mass
var D = .0;
var buff = new double[dimension];
for (var d = 0; d < dimension; d++) buff[d] = data[pointIndex, d] - centerOfMass[d];
for (var d = 0; d < dimension; d++) D += buff[d] * buff[d];
// Check whether we can use this node as a "summary"
var maxWidth = 0.0;
for (var d = 0; d < dimension; d++) {
var curWidth = boundary.GetWidth(d);
maxWidth = maxWidth > curWidth ? maxWidth : curWidth;
}
if (isLeaf || maxWidth / Math.Sqrt(D) < theta) {
// Compute and add t-SNE force between point and current node
D = 1.0 / (1.0 + D);
var mult = cumulativeSize * D;
sumQ += mult;
mult *= D;
for (var d = 0; d < dimension; d++) negF[d] += mult * buff[d];
} else {
// Recursively apply Barnes-Hut to children
for (var i = 0; i < noChildren; i++) children[i].ComputeNonEdgeForces(pointIndex, theta, negF, ref sumQ);
}
}
public static void ComputeEdgeForces(int[] rowP, int[] colP, double[] valP, int n, double[,] posF, double[,] data, int dimension) {
// Loop over all edges in the graph
for (var k = 0; k < n; k++) {
for (var i = rowP[k]; i < rowP[k + 1]; i++) {
// Compute pairwise distance and Q-value
// uses squared distance
var d = 1.0;
var buff = new double[dimension];
for (var j = 0; j < dimension; j++) buff[j] = data[k, j] - data[colP[i], j];
for (var j = 0; j < dimension; j++) d += buff[j] * buff[j];
d = valP[i] / d;
// Sum positive force
for (var j = 0; j < dimension; j++) posF[k, j] += d * buff[j];
}
}
}
#region Helpers
private void Fill(int n) {
for (var i = 0; i < n; i++) Insert(i);
}
private void Init(double[,] inpData, IEnumerable inpCorner, IEnumerable inpWidth) {
dimension = inpData.GetLength(1);
noChildren = 2;
for (uint i = 1; i < dimension; i++) noChildren *= 2;
data = inpData;
isLeaf = true;
size = 0;
cumulativeSize = 0;
boundary = new Cell((uint)dimension);
inpCorner.ForEach((i, x) => boundary.SetCorner(i, x));
inpWidth.ForEach((i, x) => boundary.SetWidth(i, x));
children = new SpacePartitioningTree[noChildren];
centerOfMass = new double[dimension];
}
private void Subdivide() {
// Create new children
var newCorner = new double[dimension];
var newWidth = new double[dimension];
for (var i = 0; i < noChildren; i++) {
var div = 1;
for (var d = 0; d < dimension; d++) {
newWidth[d] = .5 * boundary.GetWidth(d);
if (i / div % 2 == 1) newCorner[d] = boundary.GetCorner(d) - .5 * boundary.GetWidth(d);
else newCorner[d] = boundary.GetCorner(d) + .5 * boundary.GetWidth(d);
div *= 2;
}
children[i] = new SpacePartitioningTree(data, newCorner, newWidth);
}
// Move existing points to correct children
for (var i = 0; i < size; i++) {
var success = false;
for (var j = 0; j < noChildren; j++) {
if (!success) success = children[j].Insert(index[i]);
}
index[i] = -1; // as in tSNE implementation by van der Maaten
}
// Empty parent node
size = 0;
isLeaf = false;
}
#endregion
private class Cell {
private readonly uint dimension;
private readonly double[] corner;
private readonly double[] width;
public Cell(uint inpDimension) {
dimension = inpDimension;
corner = new double[dimension];
width = new double[dimension];
}
public double GetCorner(int d) {
return corner[d];
}
public double GetWidth(int d) {
return width[d];
}
public void SetCorner(int d, double val) {
corner[d] = val;
}
public void SetWidth(int d, double val) {
width[d] = val;
}
public bool ContainsPoint(double[] point) {
for (var d = 0; d < dimension; d++)
if (corner[d] - width[d] > point[d] || corner[d] + width[d] < point[d]) return false;
return true;
}
}
}
}