1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Core.Networks;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.BinaryVectorEncoding;
|
---|
29 | using HeuristicLab.Encodings.PermutationEncoding;
|
---|
30 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
31 | using HeuristicLab.Optimization;
|
---|
32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
33 | using HeuristicLab.Problems.Knapsack;
|
---|
34 | using HeuristicLab.Problems.TravelingSalesman;
|
---|
35 |
|
---|
36 | namespace HeuristicLab.Networks.IntegratedOptimization.TravelingThief {
|
---|
37 | [Item("TtpOrchestratorNode1", "Orchestrator for TTP optimization network version 1.")]
|
---|
38 | [StorableClass]
|
---|
39 | public sealed class TtpOrchestratorNode1 : TtpOrchestratorNode {
|
---|
40 | [StorableConstructor]
|
---|
41 | private TtpOrchestratorNode1(bool deserializing) : base(deserializing) { }
|
---|
42 | private TtpOrchestratorNode1(TtpOrchestratorNode1 original, Cloner cloner) : base(original, cloner) { }
|
---|
43 | public TtpOrchestratorNode1() : this("TtpOrchestratorNode1") { }
|
---|
44 | public TtpOrchestratorNode1(string name) : base(name) {
|
---|
45 | MetaSolverOrchestrationPort = CreateOrchestrationPort<MaximizationVariegationProblem<RealVectorEncoding>>(MetaSolverName + OrchestrationPortNameSuffix);
|
---|
46 | MetaSolverEvaluationPort = CreateEvaluationPort<RealVector>(MetaSolverName + EvaluationPortNameSuffix, "RealVector", "Quality");
|
---|
47 | TspSolverOrchestrationPort = CreateOrchestrationPort<TourProfitProblem>(TspSolverName + OrchestrationPortNameSuffix);
|
---|
48 | KspSolverOrchestrationPort = CreateOrchestrationPort<BinaryKnapsackProblem>(KspSolverName + OrchestrationPortNameSuffix);
|
---|
49 | }
|
---|
50 |
|
---|
51 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
52 | return new TtpOrchestratorNode1(this, cloner);
|
---|
53 | }
|
---|
54 |
|
---|
55 | public override void Prepare(bool clearRuns = false) {
|
---|
56 | base.Prepare(clearRuns);
|
---|
57 |
|
---|
58 | var metaMsg = MetaSolverOrchestrationPort.PrepareMessage();
|
---|
59 | var msgFlags = OrchestrationMessage.Prepare | OrchestrationMessage.SetEvalHook;
|
---|
60 | if (clearRuns) msgFlags |= OrchestrationMessage.ClearRuns;
|
---|
61 | metaMsg["OrchestrationMessage"] = new EnumValue<OrchestrationMessage>(msgFlags);
|
---|
62 | var problem = new MaximizationVariegationProblem<RealVectorEncoding>();
|
---|
63 | problem.Encoding.Length = KspParameter.Value.Length;
|
---|
64 | problem.Encoding.Bounds = new DoubleMatrix(new[,] { { -1.0, 1.0 } });
|
---|
65 | metaMsg["Problem"] = problem;
|
---|
66 | MetaSolverOrchestrationPort.SendMessage(metaMsg);
|
---|
67 | }
|
---|
68 |
|
---|
69 | #region MetaSolver Message Handling
|
---|
70 | protected override void MetaSolverEvaluationPortMessage(IMessage message) {
|
---|
71 | var factors = (RealVector)message["RealVector"];
|
---|
72 |
|
---|
73 | var ksp = (BinaryKnapsackProblem)KspParameter.Value.Clone();
|
---|
74 | for (int i = 0; i < ksp.Values.Length; i++)
|
---|
75 | ksp.Values[i] = (int)Math.Ceiling(ksp.Values[i] * factors[i]);
|
---|
76 |
|
---|
77 | var kspMsg = KspSolverOrchestrationPort.PrepareMessage();
|
---|
78 | kspMsg["OrchestrationMessage"] = new EnumValue<OrchestrationMessage>(OrchestrationMessage.Prepare | OrchestrationMessage.ClearRuns | OrchestrationMessage.Start);
|
---|
79 | kspMsg["Problem"] = ksp;
|
---|
80 | KspSolverOrchestrationPort.SendMessage(kspMsg);
|
---|
81 | cts.Token.ThrowIfCancellationRequested();
|
---|
82 |
|
---|
83 | var kspResults = (ResultCollection)kspMsg["Results"];
|
---|
84 | var bestKspSolution = (BinaryVector)kspResults["Best Solution"].Value.Clone();
|
---|
85 | var kspCapacity = (IntValue)KspParameter.Value.KnapsackCapacity.Clone();
|
---|
86 | var kspPenalty = new DoubleValue(0.0);
|
---|
87 | var kspWeights = (IntArray)KspParameter.Value.Weights.Clone();
|
---|
88 | var kspValues = (IntArray)KspParameter.Value.Values.Clone();
|
---|
89 | var bestKspQuality = KnapsackEvaluator.Apply(bestKspSolution, kspCapacity, kspPenalty, kspWeights, kspValues).Quality;
|
---|
90 | var loot = new KnapsackSolution(bestKspSolution, bestKspQuality, kspCapacity, kspWeights, kspValues);
|
---|
91 |
|
---|
92 | var availability = TtpUtils.GetAvailability(AvailabilityParameter.Value.ToArray());
|
---|
93 |
|
---|
94 | var tspMsg = TspSolverOrchestrationPort.PrepareMessage();
|
---|
95 | tspMsg["OrchestrationMessage"] = new EnumValue<OrchestrationMessage>(OrchestrationMessage.Prepare | OrchestrationMessage.ClearRuns | OrchestrationMessage.Start);
|
---|
96 | var tpp = new TourProfitProblem {
|
---|
97 | Tsp = (TravelingSalesmanProblem)TspParameter.Value.Clone(),
|
---|
98 | Ksp = (BinaryKnapsackProblem)KspParameter.Value.Clone(),
|
---|
99 | FixedKspSolution = bestKspSolution,
|
---|
100 | Availability = availability,
|
---|
101 | RentingRatio = RentingRatioParameter.Value.Value,
|
---|
102 | MinSpeed = MinSpeedParameter.Value.Value,
|
---|
103 | MaxSpeed = MaxSpeedParameter.Value.Value,
|
---|
104 | };
|
---|
105 | tpp.Encoding.Length = TspParameter.Value.Coordinates.Rows;
|
---|
106 | tspMsg["Problem"] = tpp;
|
---|
107 | TspSolverOrchestrationPort.SendMessage(tspMsg);
|
---|
108 | cts.Token.ThrowIfCancellationRequested();
|
---|
109 |
|
---|
110 | var tspResults = (ResultCollection)tspMsg["Results"];
|
---|
111 | var bestTspSolution = (Permutation)tspResults["Best TSP Solution"].Value.Clone();
|
---|
112 | var coordinates = (DoubleMatrix)TspParameter.Value.Coordinates.Clone();
|
---|
113 | var tour = new PathTSPTour(coordinates, bestTspSolution, new DoubleValue(TSPCoordinatesPathEvaluator.Apply(new TSPEuclideanPathEvaluator(), coordinates, bestTspSolution)));
|
---|
114 |
|
---|
115 | #region Analyze
|
---|
116 | double objectiveValue = TtpUtils.Evaluate(TspParameter.Value, tour.Permutation.ToArray(), KspParameter.Value, loot.BinaryVector.ToArray(),
|
---|
117 | availability, RentingRatioParameter.Value.Value, MinSpeedParameter.Value.Value, MaxSpeedParameter.Value.Value);
|
---|
118 | ((DoubleValue)message["Quality"]).Value = objectiveValue;
|
---|
119 |
|
---|
120 | IResult bestQuality;
|
---|
121 | if (!Results.TryGetValue("Best TTP Quality", out bestQuality)) {
|
---|
122 | Results.Add(new Result("Best TTP Quality", new DoubleValue(objectiveValue)));
|
---|
123 | Results.Add(new Result("Best Tour", tour));
|
---|
124 | Results.Add(new Result("Best Loot", loot));
|
---|
125 | } else if (objectiveValue > ((DoubleValue)bestQuality.Value).Value) {
|
---|
126 | ((DoubleValue)bestQuality.Value).Value = objectiveValue;
|
---|
127 | Results["Best Tour"].Value = tour;
|
---|
128 | Results["Best Loot"].Value = loot;
|
---|
129 | }
|
---|
130 | #endregion
|
---|
131 | }
|
---|
132 | #endregion
|
---|
133 | }
|
---|
134 | }
|
---|