#region License Information /* HeuristicLab * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using System.Linq; using System.Windows.Forms; using HeuristicLab.MainForm; using HeuristicLab.MainForm.WindowsForms; namespace HeuristicLab.Problems.DataAnalysis.Views { [View("Error Characteristics Curve")] [Content(typeof(ITimeSeriesPrognosisSolution))] public partial class TimeSeriesPrognosisSolutionErrorCharacteristicsCurveView : RegressionSolutionErrorCharacteristicsCurveView { public TimeSeriesPrognosisSolutionErrorCharacteristicsCurveView() : base() { InitializeComponent(); } public new ITimeSeriesPrognosisSolution Content { get { return (ITimeSeriesPrognosisSolution)base.Content; } set { base.Content = value; } } public new ITimeSeriesPrognosisProblemData ProblemData { get { if (Content == null) return null; return Content.ProblemData; } } protected override void UpdateChart() { base.UpdateChart(); if (Content == null) return; //AR1 model double alpha, beta; OnlineCalculatorError errorState; IEnumerable trainingStartValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices.Select(r => r - 1).Where(r => r > 0)).ToList(); OnlineLinearScalingParameterCalculator.Calculate(ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices.Where(x => x > 0)), trainingStartValues, out alpha, out beta, out errorState); var AR1model = new TimeSeriesPrognosisAutoRegressiveModel(ProblemData.TargetVariable, new double[] { beta }, alpha).CreateTimeSeriesPrognosisSolution(ProblemData); AR1model.Name = "AR(1) Model"; AddRegressionSolution(AR1model); } } }