#region License Information /* HeuristicLab * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding { [StorableClass] [Item("RemoveBranchManipulation", "Removes a random sub-tree of the input tree and fixes the tree by generating random subtrees if necessary..")] public sealed class RemoveBranchManipulation : SymbolicExpressionTreeManipulator, ISymbolicExpressionTreeSizeConstraintOperator { private const int MAX_TRIES = 100; private const string MaximumSymbolicExpressionTreeLengthParameterName = "MaximumSymbolicExpressionTreeLength"; private const string MaximumSymbolicExpressionTreeDepthParameterName = "MaximumSymbolicExpressionTreeDepth"; #region Parameter Properties public IValueLookupParameter MaximumSymbolicExpressionTreeLengthParameter { get { return (IValueLookupParameter)Parameters[MaximumSymbolicExpressionTreeLengthParameterName]; } } public IValueLookupParameter MaximumSymbolicExpressionTreeDepthParameter { get { return (IValueLookupParameter)Parameters[MaximumSymbolicExpressionTreeDepthParameterName]; } } #endregion #region Properties public IntValue MaximumSymbolicExpressionTreeLength { get { return MaximumSymbolicExpressionTreeLengthParameter.ActualValue; } } public IntValue MaximumSymbolicExpressionTreeDepth { get { return MaximumSymbolicExpressionTreeDepthParameter.ActualValue; } } #endregion [StorableConstructor] private RemoveBranchManipulation(bool deserializing) : base(deserializing) { } private RemoveBranchManipulation(RemoveBranchManipulation original, Cloner cloner) : base(original, cloner) { } public RemoveBranchManipulation() : base() { Parameters.Add(new ValueLookupParameter(MaximumSymbolicExpressionTreeLengthParameterName, "The maximal length (number of nodes) of the symbolic expression tree.")); Parameters.Add(new ValueLookupParameter(MaximumSymbolicExpressionTreeDepthParameterName, "The maximal depth of the symbolic expression tree (a tree with one node has depth = 0).")); } public override IDeepCloneable Clone(Cloner cloner) { return new RemoveBranchManipulation(this, cloner); } protected override void Manipulate(IRandom random, ISymbolicExpressionTree symbolicExpressionTree) { RemoveRandomBranch(random, symbolicExpressionTree, MaximumSymbolicExpressionTreeLength.Value, MaximumSymbolicExpressionTreeDepth.Value); } public static void RemoveRandomBranch(IRandom random, ISymbolicExpressionTree symbolicExpressionTree, int maxTreeLength, int maxTreeDepth) { var allowedSymbols = new List(); ISymbolicExpressionTreeNode parent; int childIndex; int maxLength; int maxDepth; // repeat until a fitting parent and child are found (MAX_TRIES times) int tries = 0; var nodes = symbolicExpressionTree.Root.IterateNodesPrefix().Skip(1).Where(n => n.SubtreeCount > 0).ToList(); do { parent = nodes.SelectRandom(random); childIndex = random.Next(parent.SubtreeCount); var child = parent.GetSubtree(childIndex); maxLength = maxTreeLength - symbolicExpressionTree.Length + child.GetLength(); maxDepth = maxTreeDepth - symbolicExpressionTree.Depth + child.GetDepth(); allowedSymbols.Clear(); foreach (var symbol in parent.Grammar.GetAllowedChildSymbols(parent.Symbol, childIndex)) { // check basic properties that the new symbol must have if (symbol.Name != child.Symbol.Name && symbol.InitialFrequency > 0 && parent.Grammar.GetMinimumExpressionDepth(symbol) + 1 <= maxDepth && parent.Grammar.GetMinimumExpressionLength(symbol) <= maxLength) { allowedSymbols.Add(symbol); } } tries++; } while (tries < MAX_TRIES && allowedSymbols.Count == 0); if (tries >= MAX_TRIES) return; ReplaceWithMinimalTree(random, symbolicExpressionTree.Root, parent, childIndex); } private static void ReplaceWithMinimalTree(IRandom random, ISymbolicExpressionTreeNode root, ISymbolicExpressionTreeNode parent, int childIndex) { // determine possible symbols that will lead to the smallest possible tree var possibleSymbols = (from s in parent.Grammar.GetAllowedChildSymbols(parent.Symbol, childIndex) where s.InitialFrequency > 0.0 group s by parent.Grammar.GetMinimumExpressionLength(s) into g orderby g.Key select g).First().ToList(); var weights = possibleSymbols.Select(x => x.InitialFrequency).ToList(); var selectedSymbol = possibleSymbols.SelectRandom(weights, random); var newTreeNode = selectedSymbol.CreateTreeNode(); if (newTreeNode.HasLocalParameters) newTreeNode.ResetLocalParameters(random); parent.RemoveSubtree(childIndex); parent.InsertSubtree(childIndex, newTreeNode); var topLevelNode = newTreeNode as SymbolicExpressionTreeTopLevelNode; if (topLevelNode != null) topLevelNode.SetGrammar((ISymbolicExpressionTreeGrammar)root.Grammar.Clone()); for (int i = 0; i < newTreeNode.Grammar.GetMinimumSubtreeCount(newTreeNode.Symbol); i++) { // insert a dummy sub-tree and add the pending extension to the list var dummy = new SymbolicExpressionTreeNode(); newTreeNode.AddSubtree(dummy); // replace the just inserted dummy by recursive application ReplaceWithMinimalTree(random, root, newTreeNode, i); } } } }