#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Optimization;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.DataAnalysis;
using HeuristicLab.Problems.DataAnalysis.Symbolic;
using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
using HeuristicLab.Parameters;
namespace HeuristicLab.Algorithms.DataAnalysis {
///
/// Neural network classification data analysis algorithm.
///
[Item("Neural Network Classification", "Neural network classification data analysis algorithm (wrapper for ALGLIB). Further documentation: http://www.alglib.net/dataanalysis/neuralnetworks.php")]
[Creatable("Data Analysis")]
[StorableClass]
public sealed class NeuralNetworkClassification : FixedDataAnalysisAlgorithm {
private const string DecayParameterName = "Decay";
private const string HiddenLayersParameterName = "HiddenLayers";
private const string NodesInFirstHiddenLayerParameterName = "NodesInFirstHiddenLayer";
private const string NodesInSecondHiddenLayerParameterName = "NodesInSecondHiddenLayer";
private const string RestartsParameterName = "Restarts";
private const string NeuralNetworkRegressionModelResultName = "Neural network classification solution";
#region parameter properties
public IFixedValueParameter DecayParameter {
get { return (IFixedValueParameter)Parameters[DecayParameterName]; }
}
public IConstrainedValueParameter HiddenLayersParameter {
get { return (IConstrainedValueParameter)Parameters[HiddenLayersParameterName]; }
}
public IFixedValueParameter NodesInFirstHiddenLayerParameter {
get { return (IFixedValueParameter)Parameters[NodesInFirstHiddenLayerParameterName]; }
}
public IFixedValueParameter NodesInSecondHiddenLayerParameter {
get { return (IFixedValueParameter)Parameters[NodesInSecondHiddenLayerParameterName]; }
}
public IFixedValueParameter RestartsParameter {
get { return (IFixedValueParameter)Parameters[RestartsParameterName]; }
}
#endregion
#region properties
public double Decay {
get { return DecayParameter.Value.Value; }
set {
if (value < 0.001 || value > 100) throw new ArgumentException("The decay parameter should be set to a value between 0.001 and 100.", "Decay");
DecayParameter.Value.Value = value;
}
}
public int HiddenLayers {
get { return HiddenLayersParameter.Value.Value; }
set {
if (value < 0 || value > 2) throw new ArgumentException("The number of hidden layers should be set to 0, 1, or 2.", "HiddenLayers");
HiddenLayersParameter.Value = (from v in HiddenLayersParameter.ValidValues
where v.Value == value
select v)
.Single();
}
}
public int NodesInFirstHiddenLayer {
get { return NodesInFirstHiddenLayerParameter.Value.Value; }
set {
if (value < 1) throw new ArgumentException("The number of nodes in the first hidden layer must be at least one.", "NodesInFirstHiddenLayer");
NodesInFirstHiddenLayerParameter.Value.Value = value;
}
}
public int NodesInSecondHiddenLayer {
get { return NodesInSecondHiddenLayerParameter.Value.Value; }
set {
if (value < 1) throw new ArgumentException("The number of nodes in the first second layer must be at least one.", "NodesInSecondHiddenLayer");
NodesInSecondHiddenLayerParameter.Value.Value = value;
}
}
public int Restarts {
get { return RestartsParameter.Value.Value; }
set {
if (value < 0) throw new ArgumentException("The number of restarts must be positive.", "Restarts");
RestartsParameter.Value.Value = value;
}
}
#endregion
[StorableConstructor]
private NeuralNetworkClassification(bool deserializing) : base(deserializing) { }
private NeuralNetworkClassification(NeuralNetworkClassification original, Cloner cloner)
: base(original, cloner) {
RegisterEventHandlers();
}
public NeuralNetworkClassification()
: base() {
var validHiddenLayerValues = new ItemSet(new IntValue[] {
(IntValue)new IntValue(0).AsReadOnly(),
(IntValue)new IntValue(1).AsReadOnly(),
(IntValue)new IntValue(2).AsReadOnly() });
var selectedHiddenLayerValue = (from v in validHiddenLayerValues
where v.Value == 1
select v)
.Single();
Parameters.Add(new FixedValueParameter(DecayParameterName, "The decay parameter for the training phase of the neural network. This parameter determines the strengh of regularization and should be set to a value between 0.001 (weak regularization) to 100 (very strong regularization). The correct value should be determined via cross-validation.", new DoubleValue(1)));
Parameters.Add(new ConstrainedValueParameter(HiddenLayersParameterName, "The number of hidden layers for the neural network (0, 1, or 2)", validHiddenLayerValues, selectedHiddenLayerValue));
Parameters.Add(new FixedValueParameter(NodesInFirstHiddenLayerParameterName, "The number of nodes in the first hidden layer. This value is not used if the number of hidden layers is zero.", new IntValue(10)));
Parameters.Add(new FixedValueParameter(NodesInSecondHiddenLayerParameterName, "The number of nodes in the second hidden layer. This value is not used if the number of hidden layers is zero or one.", new IntValue(10)));
Parameters.Add(new FixedValueParameter(RestartsParameterName, "The number of restarts for learning.", new IntValue(2)));
RestartsParameter.Hidden = true;
NodesInSecondHiddenLayerParameter.Hidden = true;
RegisterEventHandlers();
Problem = new ClassificationProblem();
}
private void RegisterEventHandlers() {
HiddenLayersParameter.Value.ValueChanged += HiddenLayersParameterValueValueChanged;
HiddenLayersParameter.ValueChanged += HiddenLayersParameterValueChanged;
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
RegisterEventHandlers();
}
public override IDeepCloneable Clone(Cloner cloner) {
return new NeuralNetworkClassification(this, cloner);
}
private void HiddenLayersParameterValueChanged(object source, EventArgs e) {
HiddenLayersParameter.Value.ValueChanged += HiddenLayersParameterValueValueChanged;
HiddenLayersParameterValueValueChanged(this, EventArgs.Empty);
}
private void HiddenLayersParameterValueValueChanged(object source, EventArgs e) {
if (HiddenLayers == 0) {
NodesInFirstHiddenLayerParameter.Hidden = true;
NodesInSecondHiddenLayerParameter.Hidden = true;
} else if (HiddenLayers == 1) {
NodesInFirstHiddenLayerParameter.Hidden = false;
NodesInSecondHiddenLayerParameter.Hidden = true;
} else {
NodesInFirstHiddenLayerParameter.Hidden = false;
NodesInSecondHiddenLayerParameter.Hidden = false;
}
}
#region neural network
protected override void Run() {
double rmsError, avgRelError, relClassError;
var solution = CreateNeuralNetworkClassificationSolution(Problem.ProblemData, HiddenLayers, NodesInFirstHiddenLayer, NodesInSecondHiddenLayer, Decay, Restarts, out rmsError, out avgRelError, out relClassError);
Results.Add(new Result(NeuralNetworkRegressionModelResultName, "The neural network regression solution.", solution));
Results.Add(new Result("Root mean square error", "The root of the mean of squared errors of the neural network regression solution on the training set.", new DoubleValue(rmsError)));
Results.Add(new Result("Average relative error", "The average of relative errors of the neural network regression solution on the training set.", new PercentValue(avgRelError)));
Results.Add(new Result("Relative classification error", "The percentage of misclassified samples.", new PercentValue(relClassError)));
}
public static IClassificationSolution CreateNeuralNetworkClassificationSolution(IClassificationProblemData problemData, int nLayers, int nHiddenNodes1, int nHiddenNodes2, double decay, int restarts,
out double rmsError, out double avgRelError, out double relClassError) {
Dataset dataset = problemData.Dataset;
string targetVariable = problemData.TargetVariable;
IEnumerable allowedInputVariables = problemData.AllowedInputVariables;
IEnumerable rows = problemData.TrainingIndices;
double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables.Concat(new string[] { targetVariable }), rows);
if (inputMatrix.Cast().Any(x => double.IsNaN(x) || double.IsInfinity(x)))
throw new NotSupportedException("Neural network classification does not support NaN or infinity values in the input dataset.");
int nRows = inputMatrix.GetLength(0);
int nFeatures = inputMatrix.GetLength(1) - 1;
double[] classValues = dataset.GetDoubleValues(targetVariable).Distinct().OrderBy(x => x).ToArray();
int nClasses = classValues.Count();
// map original class values to values [0..nClasses-1]
Dictionary classIndices = new Dictionary();
for (int i = 0; i < nClasses; i++) {
classIndices[classValues[i]] = i;
}
for (int row = 0; row < nRows; row++) {
inputMatrix[row, nFeatures] = classIndices[inputMatrix[row, nFeatures]];
}
alglib.multilayerperceptron multiLayerPerceptron = null;
if (nLayers == 0) {
alglib.mlpcreatec0(allowedInputVariables.Count(), nClasses, out multiLayerPerceptron);
} else if (nLayers == 1) {
alglib.mlpcreatec1(allowedInputVariables.Count(), nHiddenNodes1, nClasses, out multiLayerPerceptron);
} else if (nLayers == 2) {
alglib.mlpcreatec2(allowedInputVariables.Count(), nHiddenNodes1, nHiddenNodes2, nClasses, out multiLayerPerceptron);
} else throw new ArgumentException("Number of layers must be zero, one, or two.", "nLayers");
alglib.mlpreport rep;
int info;
// using mlptrainlm instead of mlptraines or mlptrainbfgs because only one parameter is necessary
alglib.mlptrainlm(multiLayerPerceptron, inputMatrix, nRows, decay, restarts, out info, out rep);
if (info != 2) throw new ArgumentException("Error in calculation of neural network classification solution");
rmsError = alglib.mlprmserror(multiLayerPerceptron, inputMatrix, nRows);
avgRelError = alglib.mlpavgrelerror(multiLayerPerceptron, inputMatrix, nRows);
relClassError = alglib.mlpclserror(multiLayerPerceptron, inputMatrix, nRows) / (double)nRows;
var problemDataClone = (IClassificationProblemData)problemData.Clone();
return new NeuralNetworkClassificationSolution(problemDataClone, new NeuralNetworkModel(multiLayerPerceptron, targetVariable, allowedInputVariables, problemDataClone.ClassValues.ToArray()));
}
#endregion
}
}