#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.DataAnalysis;
namespace HeuristicLab.Algorithms.DataAnalysis {
///
/// Represents a Gaussian process solution for a regression problem which can be visualized in the GUI.
///
[Item("GaussianProcessRegressionSolution", "Represents a Gaussian process solution for a regression problem which can be visualized in the GUI.")]
[StorableClass]
public sealed class GaussianProcessRegressionSolution : RegressionSolution, IGaussianProcessSolution {
private new readonly Dictionary evaluationCache;
public new IGaussianProcessModel Model {
get { return (IGaussianProcessModel)base.Model; }
set { base.Model = value; }
}
[StorableConstructor]
private GaussianProcessRegressionSolution(bool deserializing)
: base(deserializing) {
evaluationCache = new Dictionary();
}
private GaussianProcessRegressionSolution(GaussianProcessRegressionSolution original, Cloner cloner)
: base(original, cloner) {
evaluationCache = new Dictionary(original.evaluationCache);
}
public GaussianProcessRegressionSolution(IGaussianProcessModel model, IRegressionProblemData problemData)
: base(model, problemData) {
evaluationCache = new Dictionary(problemData.Dataset.Rows);
}
public override IDeepCloneable Clone(Cloner cloner) {
return new GaussianProcessRegressionSolution(this, cloner);
}
public IEnumerable EstimatedVariance {
get { return GetEstimatedVariance(Enumerable.Range(0, ProblemData.Dataset.Rows)); }
}
public IEnumerable EstimatedTrainingVariance {
get { return GetEstimatedVariance(ProblemData.TrainingIndices); }
}
public IEnumerable EstimatedTestVariance {
get { return GetEstimatedVariance(ProblemData.TestIndices); }
}
public IEnumerable GetEstimatedVariance(IEnumerable rows) {
var rowsToEvaluate = rows.Except(evaluationCache.Keys);
var rowsEnumerator = rowsToEvaluate.GetEnumerator();
var valuesEnumerator = Model.GetEstimatedVariance(ProblemData.Dataset, rowsToEvaluate).GetEnumerator();
while (rowsEnumerator.MoveNext() & valuesEnumerator.MoveNext()) {
evaluationCache.Add(rowsEnumerator.Current, valuesEnumerator.Current);
}
return rows.Select(row => evaluationCache[row]);
}
protected override void OnModelChanged() {
evaluationCache.Clear();
base.OnModelChanged();
}
protected override void OnProblemDataChanged() {
evaluationCache.Clear();
base.OnProblemDataChanged();
}
}
}