#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Windows.Forms;
using System.Windows.Forms.DataVisualization.Charting;
using HeuristicLab.MainForm;
using HeuristicLab.Problems.DataAnalysis.Views;
namespace HeuristicLab.Algorithms.DataAnalysis.Views {
[View("Line Chart (95% confidence interval)")]
[Content(typeof(GaussianProcessRegressionSolution))]
public partial class GaussianProcessRegressionSolutionLineChartView : DataAnalysisSolutionEvaluationView {
private const string TARGETVARIABLE_SERIES_NAME = "Target Variable";
private const string ESTIMATEDVALUES_TRAINING_SERIES_NAME = "Estimated Values (training)";
private const string ESTIMATEDVALUES_TEST_SERIES_NAME = "Estimated Values (test)";
private const string ESTIMATEDVALUES_ALL_SERIES_NAME = "Estimated Values (all samples)";
public new GaussianProcessRegressionSolution Content {
get { return (GaussianProcessRegressionSolution)base.Content; }
set { base.Content = value; }
}
public GaussianProcessRegressionSolutionLineChartView()
: base() {
InitializeComponent();
//configure axis
this.chart.CustomizeAllChartAreas();
this.chart.ChartAreas[0].CursorX.IsUserSelectionEnabled = true;
this.chart.ChartAreas[0].AxisX.ScaleView.Zoomable = true;
this.chart.ChartAreas[0].AxisX.IsStartedFromZero = true;
this.chart.ChartAreas[0].CursorX.Interval = 1;
this.chart.ChartAreas[0].CursorY.IsUserSelectionEnabled = true;
this.chart.ChartAreas[0].AxisY.ScaleView.Zoomable = true;
this.chart.ChartAreas[0].CursorY.Interval = 0;
}
private void RedrawChart() {
this.chart.Series.Clear();
if (Content != null) {
this.chart.ChartAreas[0].AxisX.Minimum = 0;
this.chart.ChartAreas[0].AxisX.Maximum = Content.ProblemData.Dataset.Rows - 1;
// training series
this.chart.Series.Add(ESTIMATEDVALUES_TRAINING_SERIES_NAME);
this.chart.Series[ESTIMATEDVALUES_TRAINING_SERIES_NAME].LegendText = ESTIMATEDVALUES_TRAINING_SERIES_NAME;
this.chart.Series[ESTIMATEDVALUES_TRAINING_SERIES_NAME].ChartType = SeriesChartType.Range;
this.chart.Series[ESTIMATEDVALUES_TRAINING_SERIES_NAME].EmptyPointStyle.Color = this.chart.Series[ESTIMATEDVALUES_TRAINING_SERIES_NAME].Color;
var mean = Content.EstimatedTrainingValues.ToArray();
var s2 = Content.EstimatedTrainingVariance.ToArray();
var lower = mean.Zip(s2, (m, s) => m - 1.96 * Math.Sqrt(s)).ToArray();
var upper = mean.Zip(s2, (m, s) => m + 1.96 * Math.Sqrt(s)).ToArray();
this.chart.Series[ESTIMATEDVALUES_TRAINING_SERIES_NAME].Points.DataBindXY(Content.ProblemData.TrainingIndices.ToArray(), lower, upper);
this.InsertEmptyPoints(this.chart.Series[ESTIMATEDVALUES_TRAINING_SERIES_NAME]);
this.chart.Series[ESTIMATEDVALUES_TRAINING_SERIES_NAME].Tag = Content;
// test series
this.chart.Series.Add(ESTIMATEDVALUES_TEST_SERIES_NAME);
this.chart.Series[ESTIMATEDVALUES_TEST_SERIES_NAME].LegendText = ESTIMATEDVALUES_TEST_SERIES_NAME;
this.chart.Series[ESTIMATEDVALUES_TEST_SERIES_NAME].ChartType = SeriesChartType.Range;
mean = Content.EstimatedTestValues.ToArray();
s2 = Content.EstimatedTestVariance.ToArray();
lower = mean.Zip(s2, (m, s) => m - 1.96 * Math.Sqrt(s)).ToArray();
upper = mean.Zip(s2, (m, s) => m + 1.96 * Math.Sqrt(s)).ToArray();
this.chart.Series[ESTIMATEDVALUES_TEST_SERIES_NAME].Points.DataBindXY(Content.ProblemData.TestIndices.ToArray(), lower, upper);
this.InsertEmptyPoints(this.chart.Series[ESTIMATEDVALUES_TEST_SERIES_NAME]);
this.chart.Series[ESTIMATEDVALUES_TEST_SERIES_NAME].Tag = Content;
// series of remaining points
int[] allIndices = Enumerable.Range(0, Content.ProblemData.Dataset.Rows).Except(Content.ProblemData.TrainingIndices).Except(Content.ProblemData.TestIndices).ToArray();
mean = Content.EstimatedValues.ToArray();
s2 = Content.EstimatedVariance.ToArray();
lower = mean.Zip(s2, (m, s) => m - 1.96 * Math.Sqrt(s)).ToArray();
upper = mean.Zip(s2, (m, s) => m + 1.96 * Math.Sqrt(s)).ToArray();
List allLower = allIndices.Select(index => lower[index]).ToList();
List allUpper = allIndices.Select(index => upper[index]).ToList();
this.chart.Series.Add(ESTIMATEDVALUES_ALL_SERIES_NAME);
this.chart.Series[ESTIMATEDVALUES_ALL_SERIES_NAME].LegendText = ESTIMATEDVALUES_ALL_SERIES_NAME;
this.chart.Series[ESTIMATEDVALUES_ALL_SERIES_NAME].ChartType = SeriesChartType.Range;
if (allIndices.Count() > 0) {
this.chart.Series[ESTIMATEDVALUES_ALL_SERIES_NAME].Points.DataBindXY(allIndices, allLower, allUpper);
this.InsertEmptyPoints(this.chart.Series[ESTIMATEDVALUES_ALL_SERIES_NAME]);
}
this.chart.Series[ESTIMATEDVALUES_ALL_SERIES_NAME].Tag = Content;
// target
this.chart.Series.Add(TARGETVARIABLE_SERIES_NAME);
this.chart.Series[TARGETVARIABLE_SERIES_NAME].LegendText = Content.ProblemData.TargetVariable;
this.chart.Series[TARGETVARIABLE_SERIES_NAME].ChartType = SeriesChartType.FastLine;
this.chart.Series[TARGETVARIABLE_SERIES_NAME].Points.DataBindXY(Enumerable.Range(0, Content.ProblemData.Dataset.Rows).ToArray(),
Content.ProblemData.Dataset.GetDoubleValues(Content.ProblemData.TargetVariable).ToArray());
this.ToggleSeriesData(this.chart.Series[ESTIMATEDVALUES_ALL_SERIES_NAME]);
// the series have been added in different order than in the normal line chart
// --> adapt coloring;
chart.ApplyPaletteColors();
this.chart.Palette = ChartColorPalette.None;
var s0Color = chart.Series[0].Color;
var s1Color = chart.Series[1].Color;
var s2Color = chart.Series[2].Color;
var s3Color = chart.Series[3].Color;
this.chart.PaletteCustomColors = new Color[] { s1Color, s2Color, s3Color, s0Color };
UpdateCursorInterval();
this.UpdateStripLines();
}
}
private void InsertEmptyPoints(Series series) {
int i = 0;
while (i < series.Points.Count - 1) {
if (series.Points[i].IsEmpty) {
++i;
continue;
}
var p1 = series.Points[i];
var p2 = series.Points[i + 1];
// check for consecutive indices
if ((int)p2.XValue - (int)p1.XValue != 1) {
// insert an empty point between p1 and p2 so that the line will be invisible (transparent)
var p = new DataPoint((int)((p1.XValue + p2.XValue) / 2), new double[] { 0.0, 0.0 }) { IsEmpty = true };
// insert
series.Points.Insert(i + 1, p);
}
++i;
}
}
private void UpdateCursorInterval() {
var estimatedValues = this.chart.Series[ESTIMATEDVALUES_TRAINING_SERIES_NAME].Points.Select(x => x.YValues[0]).DefaultIfEmpty(1.0);
var targetValues = this.chart.Series[TARGETVARIABLE_SERIES_NAME].Points.Select(x => x.YValues[0]).DefaultIfEmpty(1.0);
double estimatedValuesRange = estimatedValues.Max() - estimatedValues.Min();
double targetValuesRange = targetValues.Max() - targetValues.Min();
double interestingValuesRange = Math.Min(Math.Max(targetValuesRange, 1.0), Math.Max(estimatedValuesRange, 1.0));
double digits = (int)Math.Log10(interestingValuesRange) - 3;
double yZoomInterval = Math.Max(Math.Pow(10, digits), 10E-5);
this.chart.ChartAreas[0].CursorY.Interval = yZoomInterval;
}
#region events
protected override void RegisterContentEvents() {
base.RegisterContentEvents();
Content.ModelChanged += new EventHandler(Content_ModelChanged);
Content.ProblemDataChanged += new EventHandler(Content_ProblemDataChanged);
}
protected override void DeregisterContentEvents() {
base.DeregisterContentEvents();
Content.ModelChanged -= new EventHandler(Content_ModelChanged);
Content.ProblemDataChanged -= new EventHandler(Content_ProblemDataChanged);
}
protected override void OnContentChanged() {
base.OnContentChanged();
RedrawChart();
}
private void Content_ProblemDataChanged(object sender, EventArgs e) {
RedrawChart();
}
private void Content_ModelChanged(object sender, EventArgs e) {
RedrawChart();
}
private void Chart_MouseDoubleClick(object sender, MouseEventArgs e) {
HitTestResult result = chart.HitTest(e.X, e.Y);
if (result.ChartArea != null && (result.ChartElementType == ChartElementType.PlottingArea ||
result.ChartElementType == ChartElementType.Gridlines) ||
result.ChartElementType == ChartElementType.StripLines) {
foreach (var axis in result.ChartArea.Axes)
axis.ScaleView.ZoomReset(int.MaxValue);
}
}
#endregion
private void UpdateStripLines() {
this.chart.ChartAreas[0].AxisX.StripLines.Clear();
int[] attr = new int[Content.ProblemData.Dataset.Rows + 1]; // add a virtual last row that is again empty to simplify loop further down
foreach (var row in Content.ProblemData.TrainingIndices) {
attr[row] += 1;
}
foreach (var row in Content.ProblemData.TestIndices) {
attr[row] += 2;
}
int start = 0;
int curAttr = attr[start];
for (int row = 0; row < attr.Length; row++) {
if (attr[row] != curAttr) {
switch (curAttr) {
case 0: break;
case 1:
this.CreateAndAddStripLine("Training", start, row, Color.FromArgb(40, Color.Green), Color.Transparent);
break;
case 2:
this.CreateAndAddStripLine("Test", start, row, Color.FromArgb(40, Color.Red), Color.Transparent);
break;
case 3:
this.CreateAndAddStripLine("Training and Test", start, row, Color.FromArgb(40, Color.Green), Color.FromArgb(40, Color.Red), ChartHatchStyle.WideUpwardDiagonal);
break;
default:
// should not happen
break;
}
curAttr = attr[row];
start = row;
}
}
}
private void CreateAndAddStripLine(string title, int start, int end, Color color, Color secondColor, ChartHatchStyle hatchStyle = ChartHatchStyle.None) {
StripLine stripLine = new StripLine();
stripLine.BackColor = color;
stripLine.BackSecondaryColor = secondColor;
stripLine.BackHatchStyle = hatchStyle;
stripLine.Text = title;
stripLine.Font = new Font("Times New Roman", 12, FontStyle.Bold);
// strip range is [start .. end] inclusive, but we evaluate [start..end[ (end is exclusive)
// the strip should be by one longer (starting at start - 0.5 and ending at end + 0.5)
stripLine.StripWidth = end - start;
stripLine.IntervalOffset = start - 0.5; // start slightly to the left of the first point to clearly indicate the first point in the partition
this.chart.ChartAreas[0].AxisX.StripLines.Add(stripLine);
}
private void ToggleSeriesData(Series series) {
if (series.Points.Count > 0) { //checks if series is shown
if (this.chart.Series.Any(s => s != series && s.Points.Count > 0)) {
ClearPointsQuick(series.Points);
}
} else if (Content != null) {
IEnumerable indices = null;
IEnumerable mean = null;
IEnumerable s2 = null;
double[] lower = null;
double[] upper = null;
switch (series.Name) {
case ESTIMATEDVALUES_ALL_SERIES_NAME:
indices = Enumerable.Range(0, Content.ProblemData.Dataset.Rows).Except(Content.ProblemData.TrainingIndices).Except(Content.ProblemData.TestIndices).ToArray();
mean = Content.EstimatedValues.ToArray();
s2 = Content.EstimatedVariance.ToArray();
lower = mean.Zip(s2, (m, s) => m - 1.96 * Math.Sqrt(s)).ToArray();
upper = mean.Zip(s2, (m, s) => m + 1.96 * Math.Sqrt(s)).ToArray();
lower = indices.Select(index => lower[index]).ToArray();
upper = indices.Select(index => upper[index]).ToArray();
break;
case ESTIMATEDVALUES_TRAINING_SERIES_NAME:
indices = Content.ProblemData.TrainingIndices.ToArray();
mean = Content.EstimatedTrainingValues.ToArray();
s2 = Content.EstimatedTrainingVariance.ToArray();
lower = mean.Zip(s2, (m, s) => m - 1.96 * Math.Sqrt(s)).ToArray();
upper = mean.Zip(s2, (m, s) => m + 1.96 * Math.Sqrt(s)).ToArray();
break;
case ESTIMATEDVALUES_TEST_SERIES_NAME:
indices = Content.ProblemData.TestIndices.ToArray();
mean = Content.EstimatedTestValues.ToArray();
s2 = Content.EstimatedTestVariance.ToArray();
lower = mean.Zip(s2, (m, s) => m - 1.96 * Math.Sqrt(s)).ToArray();
upper = mean.Zip(s2, (m, s) => m + 1.96 * Math.Sqrt(s)).ToArray();
break;
}
if (indices.Count() > 0) {
series.Points.DataBindXY(indices, lower, upper);
this.InsertEmptyPoints(series);
chart.Legends[series.Legend].ForeColor = Color.Black;
UpdateCursorInterval();
chart.Refresh();
}
}
}
// workaround as per http://stackoverflow.com/questions/5744930/datapointcollection-clear-performance
private static void ClearPointsQuick(DataPointCollection points) {
points.SuspendUpdates();
while (points.Count > 0)
points.RemoveAt(points.Count - 1);
points.ResumeUpdates();
}
private void chart_MouseMove(object sender, MouseEventArgs e) {
HitTestResult result = chart.HitTest(e.X, e.Y);
if (result.ChartElementType == ChartElementType.LegendItem && result.Series.Name != TARGETVARIABLE_SERIES_NAME)
Cursor = Cursors.Hand;
else
Cursor = Cursors.Default;
}
private void chart_MouseDown(object sender, MouseEventArgs e) {
HitTestResult result = chart.HitTest(e.X, e.Y);
if (result.ChartElementType == ChartElementType.LegendItem && result.Series.Name != TARGETVARIABLE_SERIES_NAME) {
ToggleSeriesData(result.Series);
}
}
private void chart_CustomizeLegend(object sender, CustomizeLegendEventArgs e) {
if (chart.Series.Count != 4) return;
e.LegendItems[0].Cells[1].ForeColor = this.chart.Series[ESTIMATEDVALUES_TRAINING_SERIES_NAME].Points.Count == 0 ? Color.Gray : Color.Black;
e.LegendItems[1].Cells[1].ForeColor = this.chart.Series[ESTIMATEDVALUES_TEST_SERIES_NAME].Points.Count == 0 ? Color.Gray : Color.Black;
e.LegendItems[2].Cells[1].ForeColor = this.chart.Series[ESTIMATEDVALUES_ALL_SERIES_NAME].Points.Count == 0 ? Color.Gray : Color.Black;
e.LegendItems[3].Cells[1].ForeColor = this.chart.Series[TARGETVARIABLE_SERIES_NAME].Points.Count == 0 ? Color.Gray : Color.Black;
}
}
}