#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Windows.Forms;
using System.Windows.Forms.DataVisualization.Charting;
using HeuristicLab.MainForm;
namespace HeuristicLab.Problems.DataAnalysis.Views {
[View("Accuracy Covered Dependence")]
[Content(typeof(IClassificationEnsembleSolution))]
public partial class ClassificationEnsembleSolutionAccuracyToCoveredSamples : DataAnalysisSolutionEvaluationView {
private const string ACCURACYCOVERED = "Accuracy to Covered percentage";
private const string AREA = "Area";
private const string SamplesComboBoxAllSamples = "All Samples";
private const string SamplesComboBoxTrainingSamples = "Training Samples";
private const string SamplesComboBoxTestSamples = "Test Samples";
private const int maxPoints = 101;
public new ClassificationEnsembleSolution Content {
get { return (ClassificationEnsembleSolution)base.Content; }
set { base.Content = value; }
}
public ClassificationEnsembleSolutionAccuracyToCoveredSamples()
: base() {
InitializeComponent();
SamplesComboBox.Items.AddRange(new string[] { SamplesComboBoxAllSamples, SamplesComboBoxTrainingSamples, SamplesComboBoxTestSamples });
SamplesComboBox.SelectedIndex = 0;
//configure axis
this.chart.CustomizeAllChartAreas();
this.chart.ChartAreas[0].CursorX.IsUserSelectionEnabled = true;
this.chart.ChartAreas[0].AxisX.ScaleView.Zoomable = true;
this.chart.ChartAreas[0].AxisX.IsStartedFromZero = true;
this.chart.ChartAreas[0].AxisX.Minimum = 0;
this.chart.ChartAreas[0].AxisX.Maximum = 1;
this.chart.ChartAreas[0].AxisX.Title = "Covered Samples in %";
this.chart.ChartAreas[0].CursorY.IsUserSelectionEnabled = true;
this.chart.ChartAreas[0].AxisY.ScaleView.Zoomable = true;
this.chart.ChartAreas[0].AxisY.IsStartedFromZero = true;
this.chart.ChartAreas[0].AxisY.Minimum = 0;
this.chart.ChartAreas[0].AxisY.Maximum = 1;
this.chart.ChartAreas[0].AxisY.Title = "Accuracy";
AUCLabel.Parent = chart;
AUCLabel.BackColor = Color.Transparent;
}
private void RedrawChart() {
this.chart.Series.Clear();
if (Content != null) {
double[] accuracy = new double[maxPoints + 1];
double[] covered = new double[maxPoints + 1];
IClassificationEnsembleSolutionWeightCalculator weightCalc = Content.WeightCalculator;
var solutions = Content.ClassificationSolutions;
double[] estimatedClassValues = null;
double[] target;
OnlineAccuracyCalculator accuracyCalc = new OnlineAccuracyCalculator();
int[] indizes;
double[] confidences;
target = Content.ProblemData.Dataset.GetDoubleValues(Content.ProblemData.TargetVariable).ToArray();
switch (SamplesComboBox.SelectedItem.ToString()) {
case SamplesComboBoxAllSamples:
indizes = Enumerable.Range(0, Content.ProblemData.Dataset.Rows).ToArray();
estimatedClassValues = Content.EstimatedClassValues.ToArray();
confidences = weightCalc.GetConfidence(solutions,
Enumerable.Range(0, Content.ProblemData.Dataset.Rows),
estimatedClassValues,
weightCalc.GetAllClassDelegate()).ToArray();
break;
case SamplesComboBoxTrainingSamples:
indizes = Content.ProblemData.TrainingIndices.ToArray();
estimatedClassValues = Content.EstimatedTrainingClassValues.ToArray();
confidences = weightCalc.GetConfidence(solutions,
Content.ProblemData.TrainingIndices,
estimatedClassValues,
weightCalc.GetTrainingClassDelegate()).ToArray();
break;
case SamplesComboBoxTestSamples:
indizes = Content.ProblemData.TestIndices.ToArray();
estimatedClassValues = Content.EstimatedTestClassValues.ToArray();
confidences = weightCalc.GetConfidence(solutions,
Content.ProblemData.TestIndices,
estimatedClassValues,
weightCalc.GetTestClassDelegate()).ToArray();
break;
default:
throw new ArgumentException();
}
if (!estimatedClassValues.All(x => Double.IsNaN(x))) {
int row;
for (int i = 0; i < maxPoints; i++) {
double confidenceValue = (1.0 / (maxPoints - 1)) * i;
int notCovered = 0;
for (int j = 0; j < indizes.Length; j++) {
row = indizes[j];
if (confidences[j] >= confidenceValue) {
accuracyCalc.Add(target[row], estimatedClassValues[j]);
} else {
notCovered++;
}
}
accuracy[i + 1] = accuracyCalc.Accuracy;
if (indizes.Length > 0) {
covered[i] = 1.0 - (double)notCovered / (double)indizes.Length;
}
accuracyCalc.Reset();
}
accuracy[0] = accuracy[1];
covered[maxPoints] = 0.0;
accuracy = accuracy.Reverse().ToArray();
covered = covered.Reverse().ToArray();
Series area = this.chart.Series.Add(AREA);
area.ChartType = SeriesChartType.Area;
area.Color = Color.LightBlue;
IEnumerable> areaPoints = CalculateAreaPoints(covered, accuracy);
area.Points.DataBindXY(areaPoints.ElementAt(0), areaPoints.ElementAt(1));
Series series = this.chart.Series.Add(ACCURACYCOVERED);
series.Color = Color.Red;
series.ChartType = SeriesChartType.FastPoint;
series.MarkerStyle = MarkerStyle.Diamond;
series.MarkerSize = 5;
series.Points.DataBindXY(covered, accuracy);
double auc = CalculateAreaUnderCurve(series);
area.LegendToolTip = "AUC: " + auc;
AUCLabel.Text = "AUC: " + auc;
} else {
AUCLabel.Text = "No values in this partition!";
}
}
}
private IEnumerable> CalculateAreaPoints(double[] covered, double[] accuracy) {
List newCovered = new List();
List worseAccuracy = new List();
newCovered.Add(covered[0]);
worseAccuracy.Add(accuracy[0]);
for (int i = 1; i < covered.Length; i++) {
if (accuracy[i] > accuracy[i - 1]) {
worseAccuracy.Add(accuracy[i - 1]);
newCovered.Add(covered[i] - Double.Epsilon);
} else {
worseAccuracy.Add(accuracy[i]);
newCovered.Add(covered[i - 1] + Double.Epsilon);
}
worseAccuracy.Add(accuracy[i]);
newCovered.Add(covered[i]);
}
return new List>() { newCovered, worseAccuracy };
}
private double CalculateAreaUnderCurve(Series series) {
if (series.Points.Count < 1) throw new ArgumentException("Could not calculate area under curve if less than 1 data points were given.");
double auc = 0.0;
for (int i = 1; i < series.Points.Count; i++) {
double width = series.Points[i].XValue - series.Points[i - 1].XValue;
double y1 = series.Points[i - 1].YValues[0];
double y2 = series.Points[i].YValues[0];
auc += (y1 + y2) * width / 2;
}
return auc;
}
#region events
protected override void RegisterContentEvents() {
base.RegisterContentEvents();
Content.ModelChanged += new EventHandler(Content_ModelChanged);
Content.ProblemDataChanged += new EventHandler(Content_ProblemDataChanged);
}
protected override void DeregisterContentEvents() {
base.DeregisterContentEvents();
Content.ModelChanged -= new EventHandler(Content_ModelChanged);
Content.ProblemDataChanged -= new EventHandler(Content_ProblemDataChanged);
}
protected override void OnContentChanged() {
base.OnContentChanged();
RedrawChart();
}
private void Content_ProblemDataChanged(object sender, EventArgs e) {
RedrawChart();
}
private void Content_ModelChanged(object sender, EventArgs e) {
RedrawChart();
}
private void SamplesComboBox_SelectedIndexChanged(object sender, EventArgs e) {
RedrawChart();
}
#endregion
}
}