#region License Information /* HeuristicLab * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Random; namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding { /// /// Takes two parent individuals P0 and P1 each. Selects a random node N0 of P0 and a random node N1 of P1. /// And replaces the branch with root0 N0 in P0 with N1 from P1 if the tree-size limits are not violated. /// When recombination with N0 and N1 would create a tree that is too large or invalid the operator randomly selects new N0 and N1 /// until a valid configuration is found. /// [Item("SubtreeSwappingCrossover", "An operator which performs subtree swapping crossover.")] [StorableClass] public class SubtreeCrossover : SymbolicExpressionTreeCrossover, ISymbolicExpressionTreeSizeConstraintOperator { private const string InternalCrossoverPointProbabilityParameterName = "InternalCrossoverPointProbability"; private const string MaximumSymbolicExpressionTreeLengthParameterName = "MaximumSymbolicExpressionTreeLength"; private const string MaximumSymbolicExpressionTreeDepthParameterName = "MaximumSymbolicExpressionTreeDepth"; #region Parameter Properties public IValueLookupParameter InternalCrossoverPointProbabilityParameter { get { return (IValueLookupParameter)Parameters[InternalCrossoverPointProbabilityParameterName]; } } public IValueLookupParameter MaximumSymbolicExpressionTreeLengthParameter { get { return (IValueLookupParameter)Parameters[MaximumSymbolicExpressionTreeLengthParameterName]; } } public IValueLookupParameter MaximumSymbolicExpressionTreeDepthParameter { get { return (IValueLookupParameter)Parameters[MaximumSymbolicExpressionTreeDepthParameterName]; } } #endregion #region Properties public PercentValue InternalCrossoverPointProbability { get { return InternalCrossoverPointProbabilityParameter.ActualValue; } } public IntValue MaximumSymbolicExpressionTreeLength { get { return MaximumSymbolicExpressionTreeLengthParameter.ActualValue; } } public IntValue MaximumSymbolicExpressionTreeDepth { get { return MaximumSymbolicExpressionTreeDepthParameter.ActualValue; } } #endregion [StorableConstructor] protected SubtreeCrossover(bool deserializing) : base(deserializing) { } protected SubtreeCrossover(SubtreeCrossover original, Cloner cloner) : base(original, cloner) { } public SubtreeCrossover() : base() { Parameters.Add(new ValueLookupParameter(MaximumSymbolicExpressionTreeLengthParameterName, "The maximal length (number of nodes) of the symbolic expression tree.")); Parameters.Add(new ValueLookupParameter(MaximumSymbolicExpressionTreeDepthParameterName, "The maximal depth of the symbolic expression tree (a tree with one node has depth = 0).")); Parameters.Add(new ValueLookupParameter(InternalCrossoverPointProbabilityParameterName, "The probability to select an internal crossover point (instead of a leaf node).", new PercentValue(0.9))); } public override IDeepCloneable Clone(Cloner cloner) { return new SubtreeCrossover(this, cloner); } public override ISymbolicExpressionTree Crossover(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1) { return Cross(random, parent0, parent1, InternalCrossoverPointProbability.Value, MaximumSymbolicExpressionTreeLength.Value, MaximumSymbolicExpressionTreeDepth.Value); } public static ISymbolicExpressionTree Cross(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1, double internalCrossoverPointProbability, int maxTreeLength, int maxTreeDepth) { // select a random crossover point in the first parent CutPoint crossoverPoint0; SelectCrossoverPoint(random, parent0, internalCrossoverPointProbability, maxTreeLength, maxTreeDepth, out crossoverPoint0); int childLength = crossoverPoint0.Child != null ? crossoverPoint0.Child.GetLength() : 0; // calculate the max length and depth that the inserted branch can have int maxInsertedBranchLength = Math.Max(0, maxTreeLength - (parent0.Length - childLength)); int maxInsertedBranchDepth = Math.Max(0, maxTreeDepth - parent0.Root.GetBranchLevel(crossoverPoint0.Parent)); List allowedBranches = new List(); parent1.Root.ForEachNodePostfix((n) => { if (n.GetLength() <= maxInsertedBranchLength && n.GetDepth() <= maxInsertedBranchDepth && crossoverPoint0.IsMatchingPointType(n)) allowedBranches.Add(n); }); // empty branch if (crossoverPoint0.IsMatchingPointType(null)) allowedBranches.Add(null); if (allowedBranches.Count == 0) { return parent0; } else { var selectedBranch = SelectRandomBranch(random, allowedBranches, internalCrossoverPointProbability); if (crossoverPoint0.Child != null) { // manipulate the tree of parent0 in place // replace the branch in tree0 with the selected branch from tree1 crossoverPoint0.Parent.RemoveSubtree(crossoverPoint0.ChildIndex); if (selectedBranch != null) { crossoverPoint0.Parent.InsertSubtree(crossoverPoint0.ChildIndex, selectedBranch); } } else { // child is null (additional child should be added under the parent) if (selectedBranch != null) { crossoverPoint0.Parent.AddSubtree(selectedBranch); } } return parent0; } } private static void SelectCrossoverPoint(IRandom random, ISymbolicExpressionTree parent0, double internalNodeProbability, int maxBranchLength, int maxBranchDepth, out CutPoint crossoverPoint) { if (internalNodeProbability < 0.0 || internalNodeProbability > 1.0) throw new ArgumentException("internalNodeProbability"); List internalCrossoverPoints = new List(); List leafCrossoverPoints = new List(); parent0.Root.ForEachNodePostfix((n) => { if (n.SubtreeCount > 0 && n != parent0.Root) { //avoid linq to reduce memory pressure for (int i = 0; i < n.SubtreeCount; i++) { var child = n.GetSubtree(i); if (child.GetLength() <= maxBranchLength && child.GetDepth() <= maxBranchDepth) { if (child.SubtreeCount > 0) internalCrossoverPoints.Add(new CutPoint(n, child)); else leafCrossoverPoints.Add(new CutPoint(n, child)); } } // add one additional extension point if the number of sub trees for the symbol is not full if (n.SubtreeCount < n.Grammar.GetMaximumSubtreeCount(n.Symbol)) { // empty extension point internalCrossoverPoints.Add(new CutPoint(n, n.SubtreeCount)); } } } ); if (random.NextDouble() < internalNodeProbability) { // select from internal node if possible if (internalCrossoverPoints.Count > 0) { // select internal crossover point or leaf crossoverPoint = internalCrossoverPoints[random.Next(internalCrossoverPoints.Count)]; } else { // otherwise select external node crossoverPoint = leafCrossoverPoints[random.Next(leafCrossoverPoints.Count)]; } } else if (leafCrossoverPoints.Count > 0) { // select from leaf crossover point if possible crossoverPoint = leafCrossoverPoints[random.Next(leafCrossoverPoints.Count)]; } else { // otherwise select internal crossover point crossoverPoint = internalCrossoverPoints[random.Next(internalCrossoverPoints.Count)]; } } private static ISymbolicExpressionTreeNode SelectRandomBranch(IRandom random, IEnumerable branches, double internalNodeProbability) { if (internalNodeProbability < 0.0 || internalNodeProbability > 1.0) throw new ArgumentException("internalNodeProbability"); List allowedInternalBranches; List allowedLeafBranches; if (random.NextDouble() < internalNodeProbability) { // select internal node if possible allowedInternalBranches = (from branch in branches where branch != null && branch.SubtreeCount > 0 select branch).ToList(); if (allowedInternalBranches.Count > 0) { return allowedInternalBranches.SampleRandom(random); } else { // no internal nodes allowed => select leaf nodes allowedLeafBranches = (from branch in branches where branch == null || branch.SubtreeCount == 0 select branch).ToList(); return allowedLeafBranches.SampleRandom(random); } } else { // select leaf node if possible allowedLeafBranches = (from branch in branches where branch == null || branch.SubtreeCount == 0 select branch).ToList(); if (allowedLeafBranches.Count > 0) { return allowedLeafBranches.SampleRandom(random); } else { allowedInternalBranches = (from branch in branches where branch != null && branch.SubtreeCount > 0 select branch).ToList(); return allowedInternalBranches.SampleRandom(random); } } } } }