[7373] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[16728] | 3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[7373] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[7407] | 22 | using System;
|
---|
[7373] | 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
[7593] | 25 | using System.Threading;
|
---|
[7373] | 26 | using HeuristicLab.Common;
|
---|
| 27 | using HeuristicLab.Core;
|
---|
| 28 | using HeuristicLab.Data;
|
---|
| 29 | using HeuristicLab.Encodings.IntegerVectorEncoding;
|
---|
| 30 | using HeuristicLab.Parameters;
|
---|
| 31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
[7813] | 32 | using HeuristicLab.Random;
|
---|
[16728] | 33 | using HEAL.Attic;
|
---|
[7373] | 34 |
|
---|
[7407] | 35 | namespace HeuristicLab.Problems.GeneralizedQuadraticAssignment {
|
---|
[15555] | 36 | /// <summary>
|
---|
| 37 | /// This is an implementation of the algorithm described in Mateus, G.R., Resende, M.G.C. & Silva, R.M.A. J Heuristics (2011) 17: 527. https://doi.org/10.1007/s10732-010-9144-0
|
---|
| 38 | /// </summary>
|
---|
[7373] | 39 | [Item("GreedyRandomizedSolutionCreator", "Creates a solution according to the procedure described in Mateus, G., Resende, M., and Silva, R. 2011. GRASP with path-relinking for the generalized quadratic assignment problem. Journal of Heuristics 17, Springer Netherlands, pp. 527-565.")]
|
---|
[16728] | 40 | [StorableType("44919EFC-AF47-4F0D-8EE4-F5AECBF776CA")]
|
---|
[15504] | 41 | public class GreedyRandomizedSolutionCreator : GQAPStochasticSolutionCreator {
|
---|
[7373] | 42 |
|
---|
| 43 | public IValueLookupParameter<IntValue> MaximumTriesParameter {
|
---|
| 44 | get { return (IValueLookupParameter<IntValue>)Parameters["MaximumTries"]; }
|
---|
| 45 | }
|
---|
[7593] | 46 | public IValueLookupParameter<BoolValue> CreateMostFeasibleSolutionParameter {
|
---|
| 47 | get { return (IValueLookupParameter<BoolValue>)Parameters["CreateMostFeasibleSolution"]; }
|
---|
| 48 | }
|
---|
[7373] | 49 |
|
---|
| 50 | [StorableConstructor]
|
---|
[16728] | 51 | protected GreedyRandomizedSolutionCreator(StorableConstructorFlag _) : base(_) { }
|
---|
[7373] | 52 | protected GreedyRandomizedSolutionCreator(GreedyRandomizedSolutionCreator original, Cloner cloner)
|
---|
| 53 | : base(original, cloner) { }
|
---|
| 54 | public GreedyRandomizedSolutionCreator()
|
---|
| 55 | : base() {
|
---|
[7593] | 56 | Parameters.Add(new ValueLookupParameter<IntValue>("MaximumTries", "The maximum number of tries to create a feasible solution after which an exception is thrown. If it is set to 0 or a negative value there will be an infinite number of attempts.", new IntValue(100000)));
|
---|
| 57 | Parameters.Add(new ValueLookupParameter<BoolValue>("CreateMostFeasibleSolution", "If this is set to true the operator will always succeed, and outputs the solution with the least violation instead of throwing an exception.", new BoolValue(false)));
|
---|
[7373] | 58 | }
|
---|
| 59 |
|
---|
| 60 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 61 | return new GreedyRandomizedSolutionCreator(this, cloner);
|
---|
| 62 | }
|
---|
| 63 |
|
---|
[15504] | 64 | public static IntegerVector CreateSolution(IRandom random, GQAPInstance problemInstance,
|
---|
[7970] | 65 | int maximumTries, bool createMostFeasibleSolution, CancellationToken cancelToken) {
|
---|
[15555] | 66 | var weights = problemInstance.Weights;
|
---|
| 67 | var distances = problemInstance.Distances;
|
---|
[15558] | 68 | var installCosts = problemInstance.InstallationCosts;
|
---|
[15504] | 69 | var demands = problemInstance.Demands;
|
---|
[15553] | 70 | var capacities = problemInstance.Capacities.ToArray();
|
---|
[15555] | 71 | var transportCosts = problemInstance.TransportationCosts;
|
---|
[15553] | 72 | var equipments = demands.Length;
|
---|
| 73 | var locations = capacities.Length;
|
---|
[7593] | 74 | int tries = 0;
|
---|
[15553] | 75 | var slack = new double[locations];
|
---|
[7593] | 76 | double minViolation = double.MaxValue;
|
---|
[15558] | 77 | int[] assignment = null;
|
---|
[15553] | 78 | int[] bestAssignment = null;
|
---|
[15555] | 79 | var F = new List<int>(equipments); // set of (initially) all facilities / equipments
|
---|
| 80 | var CF = new List<int>(equipments); // set of chosen facilities / equipments
|
---|
| 81 | var L = new List<int>(locations); // set of (initially) all locations
|
---|
[15553] | 82 | var CL_list = new List<int>(locations); // list of chosen locations
|
---|
| 83 | var CL_selected = new bool[locations]; // bool decision if location is chosen
|
---|
[15555] | 84 | var T = new List<int>(equipments); // set of facilities / equpiments that can be assigned to the set of chosen locations (CL)
|
---|
| 85 | var H = new double[locations]; // proportions for choosing locations in stage 1
|
---|
| 86 | var W = new double[equipments]; // proportions for choosing facilities in stage 2
|
---|
| 87 | var Z = new double[locations]; // proportions for choosing locations in stage 2
|
---|
[15558] | 88 |
|
---|
| 89 | for (var k = 0; k < equipments; k++) {
|
---|
| 90 | for (var h = 0; h < equipments; h++) {
|
---|
| 91 | if (k == h) continue;
|
---|
| 92 | W[k] += weights[k, h];
|
---|
| 93 | }
|
---|
| 94 | W[k] *= demands[k];
|
---|
| 95 | }
|
---|
[15555] | 96 |
|
---|
[7593] | 97 | while (maximumTries <= 0 || tries < maximumTries) {
|
---|
| 98 | cancelToken.ThrowIfCancellationRequested();
|
---|
| 99 |
|
---|
[15558] | 100 | assignment = new int[equipments];
|
---|
| 101 |
|
---|
[15555] | 102 | Array.Copy(capacities, slack, locations); // line 2 of Algorihm 2
|
---|
| 103 | CF.Clear(); // line 2 of Algorihm 2
|
---|
| 104 | Array.Clear(CL_selected, 0, locations); // line 2 of Algorihm 2
|
---|
| 105 | CL_list.Clear(); // line 2 of Algorihm 2
|
---|
| 106 | T.Clear(); // line 2 of Algorihm 2
|
---|
[7593] | 107 |
|
---|
[15555] | 108 | F.Clear(); F.AddRange(Enumerable.Range(0, equipments)); // line 2 of Algorihm 2
|
---|
| 109 | L.Clear(); L.AddRange(Enumerable.Range(0, locations)); // line 2 of Algorihm 2
|
---|
[15553] | 110 |
|
---|
[15558] | 111 | Array.Clear(H, 0, H.Length);
|
---|
| 112 |
|
---|
[15555] | 113 | double threshold = 1.0; // line 3 of Algorithm 2
|
---|
| 114 | do { // line 4 of Algorithm 2
|
---|
| 115 | if (L.Count > 0 && random.NextDouble() < threshold) { // line 5 of Algorithm 2
|
---|
| 116 | // H is the proportion that a location is chosen
|
---|
| 117 | // The paper doesn't mention what happens if the candidate list CL
|
---|
| 118 | // does not contain an element in which case according to the formula
|
---|
| 119 | // all H_k elements would be 0 which would be equal to random selection
|
---|
[15558] | 120 | var HH = L.Select(x => H[x]);
|
---|
[15555] | 121 | int l = L.SampleProportional(random, 1, HH, false, false).Single(); // line 6 of Algorithm 2
|
---|
| 122 | L.Remove(l); // line 7 of Algorithm 2
|
---|
| 123 | CL_list.Add(l); // line 7 of Algorithm 2
|
---|
| 124 | CL_selected[l] = true; // line 7 of Algorithm 2
|
---|
[15558] | 125 | // incrementally updating location weights
|
---|
| 126 | foreach (var k in L)
|
---|
| 127 | H[k] += capacities[k] * capacities[l] / distances[k, l];
|
---|
| 128 |
|
---|
[15555] | 129 | T = new List<int>(WhereDemandEqualOrLess(F, GetMaximumSlack(slack, CL_selected), demands)); // line 8 of Algorithm 2
|
---|
[7407] | 130 | }
|
---|
[15555] | 131 | if (T.Count > 0) { // line 10 of Algorithm 2
|
---|
| 132 | // W is the proportion that an equipment is chosen
|
---|
[15558] | 133 | var WW = T.Select(x => W[x]);
|
---|
| 134 | var f = T.SampleProportional(random, 1, WW, false, false) // line 11 of Algorithm 2
|
---|
[15555] | 135 | .Single();
|
---|
| 136 | T.Remove(f); // line 12 of Algorithm 2
|
---|
| 137 | F.Remove(f); // line 12 of Algorithm 2
|
---|
| 138 | CF.Add(f); // line 12 of Algorithm 2
|
---|
| 139 | var R = WhereSlackGreaterOrEqual(CL_list, demands[f], slack).ToList(); // line 13 of Algorithm 2
|
---|
| 140 | // Z is the proportion that a location is chosen in stage 2
|
---|
[15558] | 141 | var l = R[0];
|
---|
| 142 | if (R.Count > 1) { // optimization, calculate probabilistic weights only in case |R| > 1
|
---|
| 143 | Array.Clear(Z, 0, R.Count);
|
---|
| 144 | var zk = 0;
|
---|
| 145 | foreach (var k in R) {
|
---|
| 146 | // d is an increase in fitness if f would be assigned to location k
|
---|
| 147 | var d = installCosts[f, k];
|
---|
| 148 | foreach (var i in CF) {
|
---|
| 149 | if (assignment[i] == 0) continue; // i is unassigned
|
---|
| 150 | var j = assignment[i] - 1;
|
---|
| 151 | d += transportCosts * weights[f, i] * distances[k, j];
|
---|
| 152 | }
|
---|
| 153 | foreach (var h in CL_list) {
|
---|
| 154 | if (k == h) continue;
|
---|
| 155 | Z[zk] += slack[k] * capacities[h] / (d * distances[k, h]);
|
---|
| 156 | }
|
---|
| 157 | zk++;
|
---|
[15555] | 158 | }
|
---|
[15558] | 159 | l = R.SampleProportional(random, 1, Z.Take(R.Count), false, false).Single(); // line 14 of Algorithm 2
|
---|
[15555] | 160 | }
|
---|
| 161 | assignment[f] = l + 1; // line 15 of Algorithm 2
|
---|
[7407] | 162 | slack[l] -= demands[f];
|
---|
[15555] | 163 | T = new List<int>(WhereDemandEqualOrLess(F, GetMaximumSlack(slack, CL_selected), demands)); // line 16 of Algorithm 2
|
---|
| 164 | threshold = 1.0 - (double)T.Count / Math.Max(F.Count, 1.0); // line 17 of Algorithm 2
|
---|
[7407] | 165 | }
|
---|
[15555] | 166 | } while (T.Count > 0 || L.Count > 0); // line 19 of Algorithm 2
|
---|
| 167 |
|
---|
[7593] | 168 | if (maximumTries > 0) tries++;
|
---|
[15555] | 169 |
|
---|
[15553] | 170 | if (F.Count == 0) {
|
---|
[15555] | 171 | bestAssignment = assignment.Select(x => x - 1).ToArray();
|
---|
[7593] | 172 | break;
|
---|
| 173 | } else if (createMostFeasibleSolution) {
|
---|
| 174 | // complete the solution and remember the one with least violation
|
---|
[7833] | 175 | foreach (var l in L.ToArray()) {
|
---|
[15553] | 176 | CL_list.Add(l);
|
---|
| 177 | CL_selected[l] = true;
|
---|
[7833] | 178 | L.Remove(l);
|
---|
| 179 | }
|
---|
[15553] | 180 | while (F.Count > 0) {
|
---|
| 181 | var f = F.Select((v, i) => new { Index = i, Value = v }).MaxItems(x => demands[x.Value]).SampleRandom(random);
|
---|
| 182 | var l = CL_list.MaxItems(x => slack[x]).SampleRandom(random);
|
---|
| 183 | F.RemoveAt(f.Index);
|
---|
| 184 | assignment[f.Value] = l + 1;
|
---|
| 185 | slack[l] -= demands[f.Value];
|
---|
[7593] | 186 | }
|
---|
[15504] | 187 | double violation = slack.Select(x => x < 0 ? -x : 0).Sum();
|
---|
[7593] | 188 | if (violation < minViolation) {
|
---|
[15555] | 189 | bestAssignment = assignment.Select(x => x - 1).ToArray();
|
---|
[7593] | 190 | minViolation = violation;
|
---|
| 191 | }
|
---|
| 192 | }
|
---|
[7373] | 193 | }
|
---|
| 194 |
|
---|
[15555] | 195 | if (bestAssignment == null)
|
---|
[15553] | 196 | throw new InvalidOperationException(String.Format("No solution could be found in {0} tries.", maximumTries));
|
---|
[7407] | 197 |
|
---|
[15555] | 198 | return new IntegerVector(bestAssignment);
|
---|
[7373] | 199 | }
|
---|
[7407] | 200 |
|
---|
[15504] | 201 | protected override IntegerVector CreateRandomSolution(IRandom random, GQAPInstance problemInstance) {
|
---|
| 202 | return CreateSolution(random, problemInstance,
|
---|
[7593] | 203 | MaximumTriesParameter.ActualValue.Value,
|
---|
| 204 | CreateMostFeasibleSolutionParameter.ActualValue.Value,
|
---|
| 205 | CancellationToken);
|
---|
| 206 | }
|
---|
| 207 |
|
---|
[15553] | 208 | private static IEnumerable<int> WhereDemandEqualOrLess(IEnumerable<int> facilities, double maximum, DoubleArray demands) {
|
---|
[7407] | 209 | foreach (int f in facilities) {
|
---|
| 210 | if (demands[f] <= maximum) yield return f;
|
---|
| 211 | }
|
---|
| 212 | }
|
---|
| 213 |
|
---|
[15553] | 214 | private static double GetMaximumSlack(double[] slack, bool[] CL) {
|
---|
| 215 | var max = double.MinValue;
|
---|
| 216 | for (var i = 0; i < slack.Length; i++) {
|
---|
| 217 | if (CL[i] && max < slack[i]) max = slack[i];
|
---|
| 218 | }
|
---|
| 219 | return max;
|
---|
[7407] | 220 | }
|
---|
| 221 |
|
---|
[15553] | 222 | private static IEnumerable<int> WhereSlackGreaterOrEqual(IEnumerable<int> locations, double minimum, double[] slack) {
|
---|
[7407] | 223 | foreach (int l in locations) {
|
---|
| 224 | if (slack[l] >= minimum) yield return l;
|
---|
| 225 | }
|
---|
| 226 | }
|
---|
[7373] | 227 | }
|
---|
| 228 | }
|
---|