#region License Information
/* HeuristicLab
* Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.IntegerVectorEncoding;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Random;
namespace HeuristicLab.Problems.GeneralizedQuadraticAssignment {
[Item("Stochastic N-Move SingleMoveGenerator", "Randomly samples a single N-Move.")]
[StorableClass]
public class StochasticNMoveSingleMoveGenerator : GQAPNMoveGenerator, IStochasticOperator, ISingleMoveGenerator {
public ILookupParameter RandomParameter {
get { return (ILookupParameter)Parameters["Random"]; }
}
[StorableConstructor]
protected StochasticNMoveSingleMoveGenerator(bool deserializing) : base(deserializing) { }
protected StochasticNMoveSingleMoveGenerator(StochasticNMoveSingleMoveGenerator original, Cloner cloner) : base(original, cloner) { }
public StochasticNMoveSingleMoveGenerator()
: base() {
Parameters.Add(new LookupParameter("Random", "The random number generator that should be used."));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new StochasticNMoveSingleMoveGenerator(this, cloner);
}
public static NMove GenerateUpToN(IRandom random, IntegerVector assignment, int n, DoubleArray capacities) {
return GenerateExactlyN(random, assignment, random.Next(n) + 1, capacities);
}
public static NMove GenerateOneMove(IRandom random, IntegerVector assignment, DoubleArray capacities) {
var locations = capacities.Length;
if (locations <= 1) throw new ArgumentException("There must be at least two locations.");
var dim = assignment.Length;
var equip = random.Next(dim);
var equipments = new List(1) { equip };
var reassignment = new int[dim];
reassignment[equip] = 1 + (assignment[equip] + random.Next(1, locations)) % locations;
return new NMove(reassignment, equipments);
}
public static NMove GenerateTwoMove(IRandom random, IntegerVector assignment, DoubleArray capacities) {
var locations = capacities.Length;
if (locations <= 1) throw new ArgumentException("There must be at least two locations.");
var dim = assignment.Length;
var equipments = new List(2) { random.Next(dim) };
equipments.Add((equipments[0] + random.Next(1, dim)) % dim);
var reassignment = new int[dim];
for (var i = 0; i < 2; i++) {
var equip = equipments[i];
reassignment[equip] = 1 + (assignment[equip] + random.Next(1, locations)) % locations;
}
return new NMove(reassignment, equipments);
}
public static NMove GenerateExactlyN(IRandom random, IntegerVector assignment, int n, DoubleArray capacities) {
if (n == 1) return GenerateOneMove(random, assignment, capacities);
if (n == 2) return GenerateTwoMove(random, assignment, capacities);
var locations = capacities.Length;
if (locations <= 1) throw new ArgumentException("There must be at least two locations.");
var dim = assignment.Length;
var equipments = Enumerable.Range(0, dim).SampleRandomWithoutRepetition(random, n, dim).ToList();
var reassignment = new int[dim];
for (var i = 0; i < n; i++) {
var equip = equipments[i];
reassignment[equip] = 1 + (assignment[equip] + random.Next(1, locations)) % locations;
}
return new NMove(reassignment, equipments);
}
public override IEnumerable GenerateMoves(IntegerVector assignment, int n, GQAPInstance problemInstance) {
yield return GenerateUpToN(RandomParameter.ActualValue, assignment, n, problemInstance.Capacities);
}
}
}