#region License Information
/* HeuristicLab
* Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.IntegerVectorEncoding;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.GeneralizedQuadraticAssignment {
[Item("Stochastic N-Move MultiMoveGenerator", "Randomly samples a number of N-Moves.")]
[StorableClass]
public class StochasticNMoveMultiMoveGenerator : GQAPNMoveGenerator, IStochasticOperator, IMultiMoveGenerator {
public ILookupParameter RandomParameter {
get { return (ILookupParameter)Parameters["Random"]; }
}
public IValueLookupParameter SampleSizeParameter {
get { return (IValueLookupParameter)Parameters["SampleSize"]; }
}
[StorableConstructor]
protected StochasticNMoveMultiMoveGenerator(bool deserializing) : base(deserializing) { }
protected StochasticNMoveMultiMoveGenerator(StochasticNMoveMultiMoveGenerator original, Cloner cloner) : base(original, cloner) { }
public StochasticNMoveMultiMoveGenerator()
: base() {
Parameters.Add(new LookupParameter("Random", "The random number generator that should be used."));
Parameters.Add(new ValueLookupParameter("SampleSize", "The number of moves to generate."));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new StochasticNMoveMultiMoveGenerator(this, cloner);
}
public static IEnumerable Generate(IRandom random, IntegerVector assignment, int n, GQAPInstance problemInstance, int sampleSize) {
for (int i = 0; i < sampleSize; i++)
yield return StochasticNMoveSingleMoveGenerator.GenerateUpToN(random, assignment, n, problemInstance.Capacities);
}
public override IEnumerable GenerateMoves(IntegerVector assignment, int n, GQAPInstance problemInstance) {
return Generate(RandomParameter.ActualValue, assignment, n, problemInstance, SampleSizeParameter.ActualValue.Value);
}
}
}