#region License Information /* HeuristicLab * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.IntegerVectorEncoding; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.GeneralizedQuadraticAssignment { [Item("Stochastic N-Move MultiMoveGenerator", "Randomly samples a number of N-Moves.")] [StorableClass] public class StochasticNMoveMultiMoveGenerator : GQAPNMoveGenerator, IStochasticOperator, IMultiMoveGenerator { public ILookupParameter RandomParameter { get { return (ILookupParameter)Parameters["Random"]; } } public IValueLookupParameter SampleSizeParameter { get { return (IValueLookupParameter)Parameters["SampleSize"]; } } [StorableConstructor] protected StochasticNMoveMultiMoveGenerator(bool deserializing) : base(deserializing) { } protected StochasticNMoveMultiMoveGenerator(StochasticNMoveMultiMoveGenerator original, Cloner cloner) : base(original, cloner) { } public StochasticNMoveMultiMoveGenerator() : base() { Parameters.Add(new LookupParameter("Random", "The random number generator that should be used.")); Parameters.Add(new ValueLookupParameter("SampleSize", "The number of moves to generate.")); } public override IDeepCloneable Clone(Cloner cloner) { return new StochasticNMoveMultiMoveGenerator(this, cloner); } public static IEnumerable Generate(IRandom random, IntegerVector assignment, int n, GQAPInstance problemInstance, int sampleSize) { for (int i = 0; i < sampleSize; i++) yield return StochasticNMoveSingleMoveGenerator.GenerateUpToN(random, assignment, n, problemInstance.Capacities); } public override IEnumerable GenerateMoves(IntegerVector assignment, int n, GQAPInstance problemInstance) { return Generate(RandomParameter.ActualValue, assignment, n, problemInstance, SampleSizeParameter.ActualValue.Value); } } }