#region License Information
/* HeuristicLab
* Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Threading;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.IntegerVectorEncoding;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.GeneralizedQuadraticAssignment.Algorithms.LAHC {
[Item("pLAHC-s (GQAP)", "Parameterless Late-acceptance hill climber for the GQAP.")]
[Creatable(CreatableAttribute.Categories.SingleSolutionAlgorithms)]
[StorableClass]
public sealed class PLAHCS : StochasticAlgorithm {
public override bool SupportsPause {
get { return true; }
}
public override Type ProblemType {
get { return typeof(GQAP); }
}
public new GQAP Problem {
get { return (GQAP)base.Problem; }
set { base.Problem = value; }
}
[Storable]
private FixedValueParameter maximumExponentParameter;
public IFixedValueParameter MaximumExponentParameter {
get { return maximumExponentParameter; }
}
[Storable]
private FixedValueParameter minimumSprintIterationsParameter;
public IFixedValueParameter MinimumSprintIterationsParameter {
get { return minimumSprintIterationsParameter; }
}
public int MaximumExponent {
get { return maximumExponentParameter.Value.Value; }
set { maximumExponentParameter.Value.Value = value; }
}
public int MinimumSprintIterations {
get { return minimumSprintIterationsParameter.Value.Value; }
set { minimumSprintIterationsParameter.Value.Value = value; }
}
[StorableConstructor]
private PLAHCS(bool deserializing) : base(deserializing) { }
private PLAHCS(PLAHCS original, Cloner cloner)
: base(original, cloner) {
maximumExponentParameter = cloner.Clone(original.maximumExponentParameter);
minimumSprintIterationsParameter = cloner.Clone(original.minimumSprintIterationsParameter);
}
public PLAHCS() {
Parameters.Add(maximumExponentParameter = new FixedValueParameter("MaximumExponent", "The maximum power to which memory sizes should be tried (2^x). Do not set higher than 31", new IntValue(24)));
Parameters.Add(minimumSprintIterationsParameter = new FixedValueParameter("MinimumSprintIterations", "The minimum amount of iterations per sprint.", new IntValue(100000)));
Problem = new GQAP();
}
public override IDeepCloneable Clone(Cloner cloner) {
return new PLAHCS(this, cloner);
}
protected override void Initialize(CancellationToken token) {
base.Initialize(token);
Context.Problem = Problem;
Context.LastSuccess = 0;
var assign = new IntegerVector(Problem.ProblemInstance.Demands.Length, Context.Random, 0, Problem.ProblemInstance.Capacities.Length);
var eval = Problem.ProblemInstance.Evaluate(assign);
var fit = Problem.ProblemInstance.ToSingleObjective(eval);
Context.EvaluatedSolutions++;
var candidate = new GQAPSolution(assign, eval);
Context.ReplaceIncumbent(Context.ToScope(candidate, fit));
Context.BestQuality = fit;
Context.BestSolution = (GQAPSolution)candidate.Clone();
Context.BestList = new ItemList(new[] { new DoubleValue(Context.BestQuality) });
Results.Add(new Result("Sprint Iterations", new IntValue(Context.SprintIterations)));
Results.Add(new Result("Iterations", new IntValue(Context.Iterations)));
Results.Add(new Result("EvaluatedSolutions", new IntValue(Context.EvaluatedSolutions)));
Results.Add(new Result("CurrentMemorySize", new IntValue(0)));
try {
Context.RunOperator(Analyzer, token);
} catch (OperationCanceledException) { }
}
protected override void Run(CancellationToken cancellationToken) {
base.Run(cancellationToken);
var lastUpdate = ExecutionTime;
for (var i = 0; i <= MaximumExponent; i++) {
var l = (int)Math.Pow(2, i);
var memory = new double[l];
for (var vv = 0; vv < l; vv++)
memory[vv] = Context.BestList[Context.BestList.Count - 1 - (vv % Context.BestList.Count)].Value;
Array.Sort(memory);
Context.Memory = new DoubleArray(memory);
if (i > 0) Context.ReplaceIncumbent(Context.ToScope((GQAPSolution)Context.BestSolution.Clone(), Context.BestQuality));
IResult memorySizeResult;
if (Results.TryGetValue("CurrentMemorySize", out memorySizeResult))
((IntValue)memorySizeResult.Value).Value = Context.Memory.Length;
else Results.Add(new Result("CurrentMemorySize", new IntValue(Context.Memory.Length)));
Context.SprintIterations = 0;
while (!StoppingCriterion()
&& (Context.SprintIterations < MinimumSprintIterations
|| (Context.SprintIterations - Context.LastSuccess) < Context.SprintIterations * 0.02)) {
var move = StochasticNMoveSingleMoveGenerator.GenerateOneMove(Context.Random,
Context.Incumbent.Solution.Assignment, Problem.ProblemInstance.Capacities);
var moveEval = GQAPNMoveEvaluator.Evaluate(move,
Context.Incumbent.Solution.Assignment,
Context.Incumbent.Solution.Evaluation, Problem.ProblemInstance);
if (Context.SprintIterations % Problem.ProblemInstance.Demands.Length == 0)
Context.EvaluatedSolutions++;
var nextFit = Problem.ProblemInstance.ToSingleObjective(moveEval);
var nextVec = new IntegerVector(Context.Incumbent.Solution.Assignment);
NMoveMaker.Apply(nextVec, move);
var v = Context.Iterations % Context.Memory.Length;
Context.Iterations++;
Context.SprintIterations++;
var prevFit = Context.Memory[v];
var accept = nextFit <= Context.Incumbent.Fitness
|| nextFit <= prevFit;
if (accept && nextFit < Context.Incumbent.Fitness)
Context.LastSuccess = Context.SprintIterations;
if (accept) {
Context.ReplaceIncumbent(Context.ToScope(new GQAPSolution(nextVec, moveEval), nextFit));
if (nextFit < Context.BestQuality) {
Context.BestSolution = (GQAPSolution)Context.Incumbent.Solution.Clone();
Context.BestQuality = nextFit;
Context.BestList.Add(new DoubleValue(Context.BestQuality));
}
}
if (Context.Incumbent.Fitness < prevFit)
Context.Memory[v] = Context.Incumbent.Fitness;
IResult result;
if (ExecutionTime - lastUpdate > TimeSpan.FromSeconds(1)) {
if (Results.TryGetValue("Iterations", out result))
((IntValue)result.Value).Value = Context.Iterations;
else Results.Add(new Result("Iterations", new IntValue(Context.Iterations)));
if (Results.TryGetValue("Sprint Iterations", out result))
((IntValue)result.Value).Value = Context.SprintIterations;
else Results.Add(new Result("Total Iterations", new IntValue(Context.SprintIterations)));
if (Results.TryGetValue("EvaluatedSolutions", out result))
((IntValue)result.Value).Value = Context.EvaluatedSolutions;
else Results.Add(new Result("EvaluatedSolutions", new IntValue(Context.EvaluatedSolutions)));
lastUpdate = ExecutionTime;
}
if (Results.TryGetValue("BestQuality", out result))
((DoubleValue)result.Value).Value = Context.BestQuality;
else Results.Add(new Result("BestQuality", new DoubleValue(Context.BestQuality)));
if (Results.TryGetValue("BestSolution", out result))
result.Value = Context.BestSolution;
else Results.Add(new Result("BestSolution", Context.BestSolution));
try {
Context.RunOperator(Analyzer, cancellationToken);
} catch (OperationCanceledException) { }
if (cancellationToken.IsCancellationRequested) break;
}
if (StoppingCriterion() || cancellationToken.IsCancellationRequested) break;
}
IResult result2;
if (Results.TryGetValue("Iterations", out result2))
((IntValue)result2.Value).Value = Context.Iterations;
else Results.Add(new Result("Iterations", new IntValue(Context.Iterations)));
if (Results.TryGetValue("Sprint Iterations", out result2))
((IntValue)result2.Value).Value = Context.SprintIterations;
else Results.Add(new Result("Sprint Iterations", new IntValue(Context.SprintIterations)));
if (Results.TryGetValue("EvaluatedSolutions", out result2))
((IntValue)result2.Value).Value = Context.EvaluatedSolutions;
else Results.Add(new Result("EvaluatedSolutions", new IntValue(Context.EvaluatedSolutions)));
}
}
}