#region License Information /* HeuristicLab * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Linq; using System.Threading; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.IntegerVectorEncoding; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.GeneralizedQuadraticAssignment.Algorithms.Evolutionary { [Item("OSGA (GQAP)", "The algorithm implements a strict offspring selection genetic algorithm (OSGA).")] [Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms)] [StorableClass] public sealed class OSGA : StochasticAlgorithm { public override bool SupportsPause { get { return true; } } public override Type ProblemType { get { return typeof(GQAP); } } public new GQAP Problem { get { return (GQAP)base.Problem; } set { base.Problem = value; } } [Storable] private FixedValueParameter populationSizeParameter; public IFixedValueParameter PopulationSizeParameter { get { return populationSizeParameter; } } [Storable] private FixedValueParameter mutationProbabilityParameter; public IFixedValueParameter MutationProbabilityParameter { get { return mutationProbabilityParameter; } } public int PopulationSize { get { return populationSizeParameter.Value.Value; } set { populationSizeParameter.Value.Value = value; } } public double MutationProbability { get { return mutationProbabilityParameter.Value.Value; } set { mutationProbabilityParameter.Value.Value = value; } } [StorableConstructor] private OSGA(bool deserializing) : base(deserializing) { } private OSGA(OSGA original, Cloner cloner) : base(original, cloner) { populationSizeParameter = cloner.Clone(original.populationSizeParameter); mutationProbabilityParameter = cloner.Clone(original.mutationProbabilityParameter); } public OSGA() { Parameters.Add(populationSizeParameter = new FixedValueParameter("Population Size", "(μ) The population size.", new IntValue(500))); Parameters.Add(mutationProbabilityParameter = new FixedValueParameter("Mutation Probability", "The chance for an offspring to get mutated.", new PercentValue(0.05))); Problem = new GQAP(); } public override IDeepCloneable Clone(Cloner cloner) { return new OSGA(this, cloner); } protected override void Initialize(CancellationToken cancellationToken) { base.Initialize(cancellationToken); Context.Problem = Problem; Context.BestSolution = null; for (var m = 0; m < PopulationSize; m++) { var assign = new IntegerVector(Problem.ProblemInstance.Demands.Length, Context.Random, 0, Problem.ProblemInstance.Capacities.Length); var eval = Problem.ProblemInstance.Evaluate(assign); Context.EvaluatedSolutions++; var ind = new GQAPSolution(assign, eval); var fit = Problem.ProblemInstance.ToSingleObjective(eval); Context.AddToPopulation(Context.ToScope(ind, fit)); if (double.IsNaN(Context.BestQuality) || fit < Context.BestQuality) { Context.BestQuality = fit; Context.BestSolution = (GQAPSolution)ind.Clone(); } } Context.SelectionPressure = 0; Context.Attempts = 0; Context.NextGeneration = new ItemList>(); Results.Add(new Result("Iterations", new IntValue(Context.Iterations))); Results.Add(new Result("EvaluatedSolutions", new IntValue(Context.EvaluatedSolutions))); Results.Add(new Result("BestQuality", new DoubleValue(Context.BestQuality))); Results.Add(new Result("BestSolution", Context.BestSolution)); Context.RunOperator(Analyzer, cancellationToken); } protected override void Run(CancellationToken cancellationToken) { base.Run(cancellationToken); var lastUpdate = ExecutionTime; while (!StoppingCriterion()) { while (!StoppingCriterion() && Context.NextGeneration.Count < PopulationSize && Context.SelectionPressure < 500) { var idx1 = Context.Random.Next(PopulationSize); var idx2 = (idx1 + Context.Random.Next(1, PopulationSize)) % PopulationSize; var p1 = Context.AtPopulation(idx1); var p2 = Context.AtPopulation(idx2); var assign = DiscreteLocationCrossover.Apply(Context.Random, new ItemArray(new[] { p1.Solution.Assignment, p2.Solution.Assignment }), Problem.ProblemInstance.Demands, Problem.ProblemInstance.Capacities); if (Context.Random.NextDouble() < MutationProbability) { RelocateEquipmentManipluator.Apply(Context.Random, assign, Problem.ProblemInstance.Capacities.Length, 4.0 / assign.Length); } var eval = Problem.ProblemInstance.Evaluate(assign); Context.EvaluatedSolutions++; var offspring = new GQAPSolution(assign, eval); var fit = Problem.ProblemInstance.ToSingleObjective(offspring.Evaluation); if (fit < p1.Fitness && fit < p2.Fitness) { // strict OS Context.NextGeneration.Add(Context.ToScope(offspring, fit)); if (fit < Context.BestQuality) { Context.BestQuality = fit; Context.BestSolution = (GQAPSolution)offspring.Clone(); } } Context.SelectionPressure += 1.0 / PopulationSize; Context.Attempts++; if (Context.SelectionPressure > 1 && Context.NextGeneration.Count / (double)PopulationSize < Context.SelectionPressure / 500) break; if (cancellationToken.IsCancellationRequested) return; } var restart = Context.NextGeneration.Count < PopulationSize; if (restart) { var best = Context.Population.Concat(Context.NextGeneration) .OrderBy(x => x.Fitness).Take(PopulationSize).ToList(); Context.ReplacePopulation(best); } else { Context.ReplacePopulation(Context.NextGeneration); } Context.NextGeneration.Clear(); IResult result; if (ExecutionTime - lastUpdate > TimeSpan.FromSeconds(1)) { if (Results.TryGetValue("Iterations", out result)) ((IntValue)result.Value).Value = Context.Iterations; else Results.Add(new Result("Iterations", new IntValue(Context.Iterations))); if (Results.TryGetValue("EvaluatedSolutions", out result)) ((IntValue)result.Value).Value = Context.EvaluatedSolutions; else Results.Add(new Result("EvaluatedSolutions", new IntValue(Context.EvaluatedSolutions))); lastUpdate = ExecutionTime; } if (Results.TryGetValue("BestQuality", out result)) ((DoubleValue)result.Value).Value = Context.BestQuality; else Results.Add(new Result("BestQuality", new DoubleValue(Context.BestQuality))); if (Results.TryGetValue("BestSolution", out result)) result.Value = Context.BestSolution; else Results.Add(new Result("BestSolution", Context.BestSolution)); try { Context.RunOperator(Analyzer, cancellationToken); } catch (OperationCanceledException) { } Context.Iterations++; if (restart) { var seed = Context.Population.Select(x => (IntegerVector)x.Solution.Assignment.Clone()).ToList(); for (var s = 0; s < seed.Count; s++) { RelocateEquipmentManipluator.Apply(Context.Random, seed[s], Problem.ProblemInstance.Capacities.Length, 0.0); var eval = Problem.ProblemInstance.Evaluate(seed[s]); Context.EvaluatedSolutions++; var fit = Problem.ProblemInstance.ToSingleObjective(eval); Context.NextGeneration.Add(Context.ToScope(new GQAPSolution(seed[s], eval), fit)); } Context.ReplacePopulation(Context.NextGeneration); Context.NextGeneration.Clear(); } Context.SelectionPressure = 0; if (cancellationToken.IsCancellationRequested) break; } IResult result2; if (Results.TryGetValue("Iterations", out result2)) ((IntValue)result2.Value).Value = Context.Iterations; else Results.Add(new Result("Iterations", new IntValue(Context.Iterations))); if (Results.TryGetValue("EvaluatedSolutions", out result2)) ((IntValue)result2.Value).Value = Context.EvaluatedSolutions; else Results.Add(new Result("EvaluatedSolutions", new IntValue(Context.EvaluatedSolutions))); } } }