#region License Information
/* HeuristicLab
* Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Linq;
using System.Threading;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.IntegerVectorEncoding;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.GeneralizedQuadraticAssignment.Algorithms.Evolutionary {
[Item("OSGA (GQAP)", "The algorithm implements a strict offspring selection genetic algorithm (OSGA).")]
[Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms)]
[StorableClass]
public sealed class OSGA : StochasticAlgorithm {
public override bool SupportsPause {
get { return true; }
}
public override Type ProblemType {
get { return typeof(GQAP); }
}
public new GQAP Problem {
get { return (GQAP)base.Problem; }
set { base.Problem = value; }
}
[Storable]
private FixedValueParameter populationSizeParameter;
public IFixedValueParameter PopulationSizeParameter {
get { return populationSizeParameter; }
}
[Storable]
private FixedValueParameter mutationProbabilityParameter;
public IFixedValueParameter MutationProbabilityParameter {
get { return mutationProbabilityParameter; }
}
public int PopulationSize {
get { return populationSizeParameter.Value.Value; }
set { populationSizeParameter.Value.Value = value; }
}
public double MutationProbability {
get { return mutationProbabilityParameter.Value.Value; }
set { mutationProbabilityParameter.Value.Value = value; }
}
[StorableConstructor]
private OSGA(bool deserializing) : base(deserializing) { }
private OSGA(OSGA original, Cloner cloner)
: base(original, cloner) {
populationSizeParameter = cloner.Clone(original.populationSizeParameter);
mutationProbabilityParameter = cloner.Clone(original.mutationProbabilityParameter);
}
public OSGA() {
Parameters.Add(populationSizeParameter = new FixedValueParameter("Population Size", "(μ) The population size.", new IntValue(500)));
Parameters.Add(mutationProbabilityParameter = new FixedValueParameter("Mutation Probability", "The chance for an offspring to get mutated.", new PercentValue(0.05)));
Problem = new GQAP();
}
public override IDeepCloneable Clone(Cloner cloner) {
return new OSGA(this, cloner);
}
protected override void Initialize(CancellationToken cancellationToken) {
base.Initialize(cancellationToken);
Context.Problem = Problem;
Context.BestSolution = null;
for (var m = 0; m < PopulationSize; m++) {
var assign = new IntegerVector(Problem.ProblemInstance.Demands.Length, Context.Random, 0, Problem.ProblemInstance.Capacities.Length);
var eval = Problem.ProblemInstance.Evaluate(assign);
Context.EvaluatedSolutions++;
var ind = new GQAPSolution(assign, eval);
var fit = Problem.ProblemInstance.ToSingleObjective(eval);
Context.AddToPopulation(Context.ToScope(ind, fit));
if (double.IsNaN(Context.BestQuality) || fit < Context.BestQuality) {
Context.BestQuality = fit;
Context.BestSolution = (GQAPSolution)ind.Clone();
}
}
Context.SelectionPressure = 0;
Context.Attempts = 0;
Context.NextGeneration = new ItemList>();
Results.Add(new Result("Iterations", new IntValue(Context.Iterations)));
Results.Add(new Result("EvaluatedSolutions", new IntValue(Context.EvaluatedSolutions)));
Results.Add(new Result("BestQuality", new DoubleValue(Context.BestQuality)));
Results.Add(new Result("BestSolution", Context.BestSolution));
Context.RunOperator(Analyzer, cancellationToken);
}
protected override void Run(CancellationToken cancellationToken) {
base.Run(cancellationToken);
var lastUpdate = ExecutionTime;
while (!StoppingCriterion()) {
while (!StoppingCriterion() && Context.NextGeneration.Count < PopulationSize
&& Context.SelectionPressure < 500) {
var idx1 = Context.Random.Next(PopulationSize);
var idx2 = (idx1 + Context.Random.Next(1, PopulationSize)) % PopulationSize;
var p1 = Context.AtPopulation(idx1);
var p2 = Context.AtPopulation(idx2);
var assign = DiscreteLocationCrossover.Apply(Context.Random,
new ItemArray(new[] { p1.Solution.Assignment, p2.Solution.Assignment }),
Problem.ProblemInstance.Demands, Problem.ProblemInstance.Capacities);
if (Context.Random.NextDouble() < MutationProbability) {
RelocateEquipmentManipluator.Apply(Context.Random, assign, Problem.ProblemInstance.Capacities.Length, 4.0 / assign.Length);
}
var eval = Problem.ProblemInstance.Evaluate(assign);
Context.EvaluatedSolutions++;
var offspring = new GQAPSolution(assign, eval);
var fit = Problem.ProblemInstance.ToSingleObjective(offspring.Evaluation);
if (fit < p1.Fitness && fit < p2.Fitness) { // strict OS
Context.NextGeneration.Add(Context.ToScope(offspring, fit));
if (fit < Context.BestQuality) {
Context.BestQuality = fit;
Context.BestSolution = (GQAPSolution)offspring.Clone();
}
}
Context.SelectionPressure += 1.0 / PopulationSize;
Context.Attempts++;
if (Context.SelectionPressure > 1
&& Context.NextGeneration.Count / (double)PopulationSize < Context.SelectionPressure / 500)
break;
if (cancellationToken.IsCancellationRequested) return;
}
var restart = Context.NextGeneration.Count < PopulationSize;
if (restart) {
var best = Context.Population.Concat(Context.NextGeneration)
.OrderBy(x => x.Fitness).Take(PopulationSize).ToList();
Context.ReplacePopulation(best);
} else {
Context.ReplacePopulation(Context.NextGeneration);
}
Context.NextGeneration.Clear();
IResult result;
if (ExecutionTime - lastUpdate > TimeSpan.FromSeconds(1)) {
if (Results.TryGetValue("Iterations", out result))
((IntValue)result.Value).Value = Context.Iterations;
else Results.Add(new Result("Iterations", new IntValue(Context.Iterations)));
if (Results.TryGetValue("EvaluatedSolutions", out result))
((IntValue)result.Value).Value = Context.EvaluatedSolutions;
else Results.Add(new Result("EvaluatedSolutions", new IntValue(Context.EvaluatedSolutions)));
lastUpdate = ExecutionTime;
}
if (Results.TryGetValue("BestQuality", out result))
((DoubleValue)result.Value).Value = Context.BestQuality;
else Results.Add(new Result("BestQuality", new DoubleValue(Context.BestQuality)));
if (Results.TryGetValue("BestSolution", out result))
result.Value = Context.BestSolution;
else Results.Add(new Result("BestSolution", Context.BestSolution));
try {
Context.RunOperator(Analyzer, cancellationToken);
} catch (OperationCanceledException) { }
Context.Iterations++;
if (restart) {
var seed = Context.Population.Select(x => (IntegerVector)x.Solution.Assignment.Clone()).ToList();
for (var s = 0; s < seed.Count; s++) {
RelocateEquipmentManipluator.Apply(Context.Random, seed[s], Problem.ProblemInstance.Capacities.Length, 0.0);
var eval = Problem.ProblemInstance.Evaluate(seed[s]);
Context.EvaluatedSolutions++;
var fit = Problem.ProblemInstance.ToSingleObjective(eval);
Context.NextGeneration.Add(Context.ToScope(new GQAPSolution(seed[s], eval), fit));
}
Context.ReplacePopulation(Context.NextGeneration);
Context.NextGeneration.Clear();
}
Context.SelectionPressure = 0;
if (cancellationToken.IsCancellationRequested) break;
}
IResult result2;
if (Results.TryGetValue("Iterations", out result2))
((IntValue)result2.Value).Value = Context.Iterations;
else Results.Add(new Result("Iterations", new IntValue(Context.Iterations)));
if (Results.TryGetValue("EvaluatedSolutions", out result2))
((IntValue)result2.Value).Value = Context.EvaluatedSolutions;
else Results.Add(new Result("EvaluatedSolutions", new IntValue(Context.EvaluatedSolutions)));
}
}
}