#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Linq; using HEAL.Attic; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Optimization; using HeuristicLab.Parameters; namespace HeuristicLab.OptimizationExpertSystem.Common { [Item("K-Nearest Neighbor Recommender", "")] [StorableType("E791B8DE-10C6-4363-909D-09DB1780254D")] public sealed class KNearestNeighborRecommender : ParameterizedNamedItem, IAlgorithmInstanceRecommender { private IFixedValueParameter KParameter { get { return (IFixedValueParameter)Parameters["K"]; } } public int K { get { return KParameter.Value.Value; } set { KParameter.Value.Value = value; } } [StorableConstructor] private KNearestNeighborRecommender(StorableConstructorFlag _) : base(_) { } private KNearestNeighborRecommender(KNearestNeighborRecommender original, Cloner cloner) : base(original, cloner) { } public KNearestNeighborRecommender() { Parameters.Add(new FixedValueParameter("K", "The number of nearest neighbors to consider.", new IntValue(3))); } public override IDeepCloneable Clone(Cloner cloner) { return new KNearestNeighborRecommender(this, cloner); } public IRecommendationModel TrainModel(IRun[] problemInstances, KnowledgeCenter kc, string[] characteristics) { var perfData = problemInstances.Select(pi => new { ProblemInstance = pi, Performance = kc.GetAlgorithmPerformanceLog10(pi) }) .ToDictionary(x => x.ProblemInstance, x => x.Performance); return new KNearestNeighborModel(KParameter.Value.Value, perfData, characteristics); } } }