#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Operators;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using System.Collections.Generic;
using System.Linq;
namespace HeuristicLab.Analysis.FitnessLandscape {
[Item("Up/DownSelector", "A selection operator that moves towards the next local optimum, when found reverses direction and so on.")]
[StorableClass]
public class UpDownSelector : InstrumentedOperator, IStochasticOperator {
#region Parameters
public ILookupParameter MaximizationParameter {
get { return (ILookupParameter)Parameters["Maximization"]; }
}
public ILookupParameter MoveTowardsOptimumParameter {
get { return (ILookupParameter)Parameters["MoveTowardsOptimum"]; }
}
public ILookupParameter BaseQualityParameter {
get { return (ILookupParameter)Parameters["BaseQuality"]; }
}
public IScopeTreeLookupParameter QualityParameter {
get { return (IScopeTreeLookupParameter)Parameters["Quality"]; }
}
public ILookupParameter RandomParameter {
get { return (ILookupParameter)Parameters["Random"]; }
}
#endregion
#region Construction & Cloning
[StorableConstructor]
protected UpDownSelector(bool deserializing) : base(deserializing) { }
protected UpDownSelector(UpDownSelector original, Cloner cloner) : base(original, cloner) { }
public UpDownSelector() {
Parameters.Add(new LookupParameter("Maximization", "Whether the problem is a maximization or minimization problem."));
Parameters.Add(new LookupParameter("MoveTowardsOptimum", "Specifies whether the selector should optimize towards or away from the optimum."));
Parameters.Add(new LookupParameter("BaseQuality", "The base quality value to compare to. This is required to determine wheter a local optimum has been found and the direction should be reversed."));
Parameters.Add(new ScopeTreeLookupParameter("Quality", "The qualities of the solutions."));
Parameters.Add(new LookupParameter("Random", "Random number generator"));
BaseQualityParameter.ActualName = "Quality";
}
public override IDeepCloneable Clone(Cloner cloner) {
return new UpDownSelector(this, cloner);
}
#endregion
public override IOperation InstrumentedApply() {
var scopes = ExecutionContext.Scope.SubScopes.ToList();
var selected = Select(scopes);
scopes.Remove(selected);
ExecutionContext.Scope.SubScopes.Clear();
ExecutionContext.Scope.SubScopes.Add(new Scope("Remaining"));
ExecutionContext.Scope.SubScopes[0].SubScopes.AddRange(scopes);
ExecutionContext.Scope.SubScopes.Add(new Scope("Selected"));
ExecutionContext.Scope.SubScopes[1].SubScopes.Add(selected);
return base.InstrumentedApply();
}
private IScope Select(List scopes) {
var maximization = MaximizationParameter.ActualValue.Value;
bool optimize = true;
if (MoveTowardsOptimumParameter.ActualValue == null) {
MoveTowardsOptimumParameter.ActualValue = new BoolValue(true);
} else {
optimize = MoveTowardsOptimumParameter.ActualValue.Value;
}
var qualities = QualityParameter.ActualValue;
var list = qualities.Select((x, i) => new { Index = i, Quality = x.Value }).ToList();
var baseQuality = BaseQualityParameter.ActualValue.Value;
if (double.IsNaN(baseQuality)) {
baseQuality = maximization ? list.Max(x => x.Quality) : list.Min(x => x.Quality);
}
var random = RandomParameter.ActualValue;
if (random != null)
list.Shuffle(random);
if (maximization && optimize || !maximization && !optimize) {
list = list.OrderByDescending(x => x.Quality).ToList();
if (list.Count > 0 && list[0].Quality <= baseQuality)
MoveTowardsOptimumParameter.ActualValue = new BoolValue(!optimize);
} else {
list = list.OrderBy(x => x.Quality).ToList();
if (list.Count > 0 && list[0].Quality >= baseQuality)
MoveTowardsOptimumParameter.ActualValue = new BoolValue(!optimize);
}
return scopes[list[0].Index];
}
}
}