1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Globalization;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Operators;
|
---|
29 | using HeuristicLab.Optimization;
|
---|
30 | using HeuristicLab.Parameters;
|
---|
31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Analysis.FitnessLandscape {
|
---|
34 | [Item("Problem Instance Similarity Analyzer", "Base class for analyzing whether certain obtained characteristics match the characteristics of already known problem instances.")]
|
---|
35 | [StorableClass]
|
---|
36 | public abstract class ProblemInstanceAnalyzer : SingleSuccessorOperator, IAnalyzer {
|
---|
37 |
|
---|
38 | public bool EnabledByDefault {
|
---|
39 | get { return false; }
|
---|
40 | }
|
---|
41 |
|
---|
42 | [Storable]
|
---|
43 | private IResultParameter<StringMatrix> similarInstParam;
|
---|
44 | public IResultParameter<StringMatrix> SimilarInstancesParameter {
|
---|
45 | get { return similarInstParam; }
|
---|
46 | }
|
---|
47 |
|
---|
48 | [Storable]
|
---|
49 | private IValueParameter<DoubleMatrix> characteristicsParam;
|
---|
50 | public IValueParameter<DoubleMatrix> CharacteristicsParameter {
|
---|
51 | get { return characteristicsParam; }
|
---|
52 | }
|
---|
53 |
|
---|
54 | public DoubleMatrix Characteristics {
|
---|
55 | get { return CharacteristicsParameter.Value; }
|
---|
56 | set { CharacteristicsParameter.Value = value; }
|
---|
57 | }
|
---|
58 |
|
---|
59 | [StorableConstructor]
|
---|
60 | protected ProblemInstanceAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
61 |
|
---|
62 | protected ProblemInstanceAnalyzer(ProblemInstanceAnalyzer original, Cloner cloner)
|
---|
63 | : base(original, cloner) {
|
---|
64 | similarInstParam = cloner.Clone(original.similarInstParam);
|
---|
65 | characteristicsParam = cloner.Clone(original.characteristicsParam);
|
---|
66 | }
|
---|
67 |
|
---|
68 | public ProblemInstanceAnalyzer() {
|
---|
69 | Parameters.Add(similarInstParam = new ResultParameter<StringMatrix>("Similar Instances", "Ordered enumeration of similar problem instances to the one currently observed.", "Results", new StringMatrix(new [,] { { "undefined", double.NaN.ToString(CultureInfo.CurrentCulture.NumberFormat) } })));
|
---|
70 | Parameters.Add(characteristicsParam = new ValueParameter<DoubleMatrix>("Characteristics", "The matrix that contains the characteristics data and corresponding problem instance as row name."));
|
---|
71 | }
|
---|
72 |
|
---|
73 | public override IOperation Apply() {
|
---|
74 | var kbCharacteristics = Characteristics;
|
---|
75 | if (kbCharacteristics == null) throw new InvalidOperationException("No characteristics are given.");
|
---|
76 |
|
---|
77 | var currentCharacteristics = GetCharacteristics();
|
---|
78 | if (currentCharacteristics == null) return base.Apply();
|
---|
79 |
|
---|
80 | var means = kbCharacteristics.GetRow(kbCharacteristics.Rows - 2).ToArray();
|
---|
81 | var stdevs = kbCharacteristics.GetRow(kbCharacteristics.Rows - 1).ToArray();
|
---|
82 |
|
---|
83 | for (var i = 0; i < means.Length; i++) {
|
---|
84 | currentCharacteristics[i] = (currentCharacteristics[i] - means[i]) / stdevs[i];
|
---|
85 | }
|
---|
86 |
|
---|
87 | var order = Enumerable.Range(0, kbCharacteristics.Rows - 2)
|
---|
88 | .Select(row => new { Row = row, MSE = kbCharacteristics.GetRow(row).Zip(currentCharacteristics, (a, b) => (a - b) * (a - b)).Average() })
|
---|
89 | .OrderBy(x => x.MSE);
|
---|
90 |
|
---|
91 | var instances = kbCharacteristics.RowNames.ToList();
|
---|
92 | while (instances.Count < kbCharacteristics.Rows - 2)
|
---|
93 | instances.Add(instances.Count.ToString(CultureInfo.CurrentCulture.NumberFormat));
|
---|
94 |
|
---|
95 | var result = new StringMatrix(instances.Count, 2);
|
---|
96 | var idx = 0;
|
---|
97 | foreach (var o in order) {
|
---|
98 | result[idx, 0] = instances[o.Row];
|
---|
99 | result[idx, 1] = o.MSE.ToString(CultureInfo.CurrentCulture.NumberFormat);
|
---|
100 | idx++;
|
---|
101 | }
|
---|
102 |
|
---|
103 | similarInstParam.ActualValue = result;
|
---|
104 |
|
---|
105 | return base.Apply();
|
---|
106 | }
|
---|
107 |
|
---|
108 | protected abstract DoubleArray GetCharacteristics();
|
---|
109 | }
|
---|
110 | }
|
---|