[13861] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[15713] | 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
[13861] | 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
[15713] | 28 | using HeuristicLab.Encodings.IntegerVectorEncoding;
|
---|
[13861] | 29 | using HeuristicLab.Optimization;
|
---|
| 30 | using HeuristicLab.Parameters;
|
---|
| 31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
[15713] | 32 | using HeuristicLab.Problems.GeneralizedQuadraticAssignment;
|
---|
[13861] | 33 | using HeuristicLab.Random;
|
---|
| 34 |
|
---|
[14678] | 35 | namespace HeuristicLab.Analysis.FitnessLandscape {
|
---|
[15713] | 36 | [Item("Directed Walk (GQAP-specific)", "")]
|
---|
[13861] | 37 | [StorableClass]
|
---|
[15713] | 38 | public class GQAPDirectedWalk : CharacteristicCalculator {
|
---|
[13861] | 39 |
|
---|
| 40 | public IFixedValueParameter<IntValue> PathsParameter {
|
---|
| 41 | get { return (IFixedValueParameter<IntValue>)Parameters["Paths"]; }
|
---|
| 42 | }
|
---|
| 43 |
|
---|
| 44 | public IFixedValueParameter<BoolValue> BestImprovementParameter {
|
---|
| 45 | get { return (IFixedValueParameter<BoolValue>)Parameters["BestImprovement"]; }
|
---|
| 46 | }
|
---|
| 47 |
|
---|
| 48 | public IValueParameter<IntValue> SeedParameter {
|
---|
| 49 | get { return (IValueParameter<IntValue>)Parameters["Seed"]; }
|
---|
| 50 | }
|
---|
| 51 |
|
---|
[14690] | 52 | public IFixedValueParameter<BoolValue> LocalOptimaParameter {
|
---|
| 53 | get { return (IFixedValueParameter<BoolValue>)Parameters["LocalOptima"]; }
|
---|
| 54 | }
|
---|
| 55 |
|
---|
[13861] | 56 | public int Paths {
|
---|
| 57 | get { return PathsParameter.Value.Value; }
|
---|
| 58 | set { PathsParameter.Value.Value = value; }
|
---|
| 59 | }
|
---|
| 60 |
|
---|
| 61 | public bool BestImprovement {
|
---|
| 62 | get { return BestImprovementParameter.Value.Value; }
|
---|
| 63 | set { BestImprovementParameter.Value.Value = value; }
|
---|
| 64 | }
|
---|
| 65 |
|
---|
| 66 | public int? Seed {
|
---|
| 67 | get { return SeedParameter.Value != null ? SeedParameter.Value.Value : (int?)null; }
|
---|
| 68 | set { SeedParameter.Value = value.HasValue ? new IntValue(value.Value) : null; }
|
---|
| 69 | }
|
---|
| 70 |
|
---|
[14690] | 71 | public bool LocalOptima {
|
---|
| 72 | get { return LocalOptimaParameter.Value.Value; }
|
---|
| 73 | set { LocalOptimaParameter.Value.Value = value; }
|
---|
| 74 | }
|
---|
| 75 |
|
---|
[13861] | 76 | [StorableConstructor]
|
---|
[15713] | 77 | private GQAPDirectedWalk(bool deserializing) : base(deserializing) { }
|
---|
| 78 | private GQAPDirectedWalk(GQAPDirectedWalk original, Cloner cloner) : base(original, cloner) { }
|
---|
| 79 | public GQAPDirectedWalk() {
|
---|
| 80 | characteristics.AddRange(new[] { "1Shift.Sharpness", "1Shift.Bumpiness", "1Shift.Flatness" }
|
---|
[13861] | 81 | .Select(x => new StringValue(x)).ToList());
|
---|
| 82 | Parameters.Add(new FixedValueParameter<IntValue>("Paths", "The number of paths to explore (a path is a set of solutions that connect two randomly chosen solutions).", new IntValue(50)));
|
---|
| 83 | Parameters.Add(new FixedValueParameter<BoolValue>("BestImprovement", "Whether the best of all alternatives should be chosen for each step in the path or just the first improving (least degrading) move should be made.", new BoolValue(true)));
|
---|
| 84 | Parameters.Add(new OptionalValueParameter<IntValue>("Seed", "The seed for the random number generator."));
|
---|
[14690] | 85 | Parameters.Add(new FixedValueParameter<BoolValue>("LocalOptima", "Whether to perform walks between local optima.", new BoolValue(false)));
|
---|
[13861] | 86 | }
|
---|
| 87 |
|
---|
| 88 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
[15713] | 89 | return new GQAPDirectedWalk(this, cloner);
|
---|
[13861] | 90 | }
|
---|
| 91 |
|
---|
| 92 | public override bool CanCalculate() {
|
---|
[15713] | 93 | return Problem is GQAP;
|
---|
[13861] | 94 | }
|
---|
| 95 |
|
---|
| 96 | public override IEnumerable<IResult> Calculate() {
|
---|
[14429] | 97 | IRandom random = Seed.HasValue ? new MersenneTwister((uint)Seed.Value) : new MersenneTwister();
|
---|
[15713] | 98 | var gqap = (GQAP)Problem;
|
---|
| 99 | List<IntegerVector> assignments = CalculateRelinkingPoints(random, gqap, Paths, LocalOptima);
|
---|
[13861] | 100 |
|
---|
[15713] | 101 | var trajectories = Run(random, (GQAP)Problem, assignments, BestImprovement).ToList();
|
---|
| 102 | var result = IntegerVectorPathAnalysis.GetCharacteristics(trajectories);
|
---|
[15031] | 103 |
|
---|
| 104 | foreach (var chara in characteristics.CheckedItems.Select(x => x.Value.Value)) {
|
---|
[15713] | 105 | if (chara == "1Shift.Sharpness") yield return new Result("1Shift.Sharpness", new DoubleValue(result.Sharpness));
|
---|
| 106 | if (chara == "1Shift.Bumpiness") yield return new Result("1Shift.Bumpiness", new DoubleValue(result.Bumpiness));
|
---|
| 107 | if (chara == "1Shift.Flatness") yield return new Result("1Shift.Flatness", new DoubleValue(result.Flatness));
|
---|
[15031] | 108 | }
|
---|
| 109 | }
|
---|
| 110 |
|
---|
[15713] | 111 | public static List<IntegerVector> CalculateRelinkingPoints(IRandom random, GQAP gqap, int pathCount, bool localOptima) {
|
---|
| 112 | var assign = new IntegerVector(gqap.ProblemInstance.Demands.Length, random, 0, gqap.ProblemInstance.Capacities.Length);
|
---|
[15031] | 113 | if (localOptima) {
|
---|
[15713] | 114 | var eval = gqap.ProblemInstance.Evaluate(assign);
|
---|
| 115 | var fit = gqap.ProblemInstance.ToSingleObjective(eval);
|
---|
| 116 | OneOptLocalSearch.Apply(random, assign, ref fit, ref eval, gqap.ProblemInstance, out var evals);
|
---|
[14690] | 117 | }
|
---|
[15713] | 118 | var points = new List<IntegerVector> { assign };
|
---|
| 119 | while (points.Count < pathCount + 1) {
|
---|
| 120 | assign = (IntegerVector)points.Last().Clone();
|
---|
| 121 | RelocateEquipmentManipluator.Apply(random, assign, gqap.ProblemInstance.Capacities.Length, 0);
|
---|
[15031] | 122 | if (localOptima) {
|
---|
[15713] | 123 | var eval = gqap.ProblemInstance.Evaluate(assign);
|
---|
| 124 | var fit = gqap.ProblemInstance.ToSingleObjective(eval);
|
---|
| 125 | OneOptLocalSearch.Apply(random, assign, ref fit, ref eval, gqap.ProblemInstance, out var evals);
|
---|
[14690] | 126 | }
|
---|
[15713] | 127 | if (HammingSimilarityCalculator.CalculateSimilarity(points.Last(), assign) < 0.75)
|
---|
| 128 | points.Add(assign);
|
---|
[14429] | 129 | }
|
---|
[13861] | 130 |
|
---|
[15713] | 131 | return points;
|
---|
[14429] | 132 | }
|
---|
[13861] | 133 |
|
---|
[15713] | 134 | public static IEnumerable<List<Tuple<IntegerVector, double>>> Run(IRandom random, GQAP gqap, IEnumerable<IntegerVector> points, bool bestImprovement = true) {
|
---|
| 135 | var iter = points.GetEnumerator();
|
---|
[14429] | 136 | if (!iter.MoveNext()) yield break;
|
---|
[13861] | 137 |
|
---|
[14429] | 138 | var start = iter.Current;
|
---|
| 139 | while (iter.MoveNext()) {
|
---|
| 140 | var end = iter.Current;
|
---|
[13861] | 141 |
|
---|
[15713] | 142 | var walk = (bestImprovement ? BestDirectedWalk(gqap, start, end) : FirstDirectedWalk(random, gqap, start, end)).ToList();
|
---|
| 143 | yield return walk.ToList();
|
---|
[14429] | 144 | start = end;
|
---|
| 145 | } // end paths
|
---|
| 146 | }
|
---|
[13861] | 147 |
|
---|
[15713] | 148 | private static IEnumerable<Tuple<IntegerVector, double>> BestDirectedWalk(GQAP gqap, IntegerVector start, IntegerVector end) {
|
---|
| 149 | var N = gqap.ProblemInstance.Demands.Length;
|
---|
[13861] | 150 | var sol = start;
|
---|
[15713] | 151 | var evaluation = gqap.ProblemInstance.Evaluate(start);
|
---|
| 152 | var fitness = gqap.ProblemInstance.ToSingleObjective(evaluation);
|
---|
[14429] | 153 | yield return Tuple.Create(sol, fitness);
|
---|
[15713] | 154 |
|
---|
| 155 | var reassignments = Enumerable.Range(0, N).Select(x => {
|
---|
| 156 | if (start[x] == end[x]) return null;
|
---|
| 157 | var r = new int[N];
|
---|
| 158 | r[x] = end[x] + 1;
|
---|
| 159 | return r;
|
---|
| 160 | }).ToArray();
|
---|
| 161 | var indices = Enumerable.Range(0, N).Select(x => start[x] == end[x] ? null : new List<int>(1) { x }).ToArray();
|
---|
[14429] | 162 |
|
---|
[15713] | 163 | for (var step = 0; step < N; step++) {
|
---|
[13861] | 164 | var bestFitness = double.MaxValue;
|
---|
[15713] | 165 | Evaluation bestEvaluation = null;
|
---|
[13861] | 166 | var bestIndex = -1;
|
---|
[15713] | 167 | sol = (IntegerVector)sol.Clone();
|
---|
| 168 |
|
---|
[13861] | 169 | for (var index = 0; index < N; index++) {
|
---|
| 170 | if (sol[index] == end[index]) continue;
|
---|
[15713] | 171 |
|
---|
| 172 | var oneMove = new NMove(reassignments[index], indices[index]);
|
---|
| 173 | var eval = GQAPNMoveEvaluator.Evaluate(oneMove, sol, evaluation, gqap.ProblemInstance);
|
---|
| 174 | var fit = gqap.ProblemInstance.ToSingleObjective(eval);
|
---|
[13861] | 175 | if (fit < bestFitness) { // QAP is minimization
|
---|
| 176 | bestFitness = fit;
|
---|
[15713] | 177 | bestEvaluation = eval;
|
---|
[13861] | 178 | bestIndex = index;
|
---|
| 179 | }
|
---|
| 180 | }
|
---|
| 181 | if (bestIndex >= 0) {
|
---|
[15713] | 182 | sol[bestIndex] = end[bestIndex];
|
---|
| 183 | fitness = bestFitness;
|
---|
| 184 | evaluation = bestEvaluation;
|
---|
[13861] | 185 | yield return Tuple.Create(sol, fitness);
|
---|
| 186 | } else break;
|
---|
| 187 | }
|
---|
| 188 | }
|
---|
| 189 |
|
---|
[15713] | 190 | private static IEnumerable<Tuple<IntegerVector, double>> FirstDirectedWalk(IRandom random, GQAP gqap, IntegerVector start, IntegerVector end) {
|
---|
| 191 | var N = gqap.ProblemInstance.Demands.Length;
|
---|
[13861] | 192 | var sol = start;
|
---|
[15713] | 193 | var evaluation = gqap.ProblemInstance.Evaluate(start);
|
---|
| 194 | var fitness = gqap.ProblemInstance.ToSingleObjective(evaluation);
|
---|
[14429] | 195 | yield return Tuple.Create(sol, fitness);
|
---|
| 196 |
|
---|
[15713] | 197 | var reassignments = Enumerable.Range(0, N).Select(x => {
|
---|
| 198 | if (start[x] == end[x]) return null;
|
---|
| 199 | var r = new int[N];
|
---|
| 200 | r[x] = end[x] + 1;
|
---|
| 201 | return r;
|
---|
| 202 | }).ToArray();
|
---|
| 203 | var indices = Enumerable.Range(0, N).Select(x => start[x] == end[x] ? null : new List<int>(1) { x }).ToArray();
|
---|
| 204 |
|
---|
[13861] | 205 | // randomize the order in which improvements are tried
|
---|
| 206 | var order = Enumerable.Range(0, N).Shuffle(random).ToArray();
|
---|
[15713] | 207 |
|
---|
| 208 | for (var step = 0; step < N; step++) {
|
---|
[13861] | 209 | var bestFitness = double.MaxValue;
|
---|
[15713] | 210 | Evaluation bestEvaluation = null;
|
---|
[13861] | 211 | var bestIndex = -1;
|
---|
[15713] | 212 | sol = (IntegerVector)sol.Clone();
|
---|
[13861] | 213 | for (var i = 0; i < N; i++) {
|
---|
| 214 | var index = order[i];
|
---|
| 215 | if (sol[index] == end[index]) continue;
|
---|
[15713] | 216 |
|
---|
| 217 | var oneMove = new NMove(reassignments[index], indices[index]);
|
---|
| 218 | var eval = GQAPNMoveEvaluator.Evaluate(oneMove, sol, evaluation, gqap.ProblemInstance);
|
---|
| 219 | var fit = gqap.ProblemInstance.ToSingleObjective(eval);
|
---|
| 220 |
|
---|
| 221 | if (fit < bestFitness) { // GQAP is minimization
|
---|
[13861] | 222 | bestFitness = fit;
|
---|
[15713] | 223 | bestEvaluation = evaluation;
|
---|
[13861] | 224 | bestIndex = index;
|
---|
[15713] | 225 | if (fit < fitness) break;
|
---|
[13861] | 226 | }
|
---|
| 227 | }
|
---|
| 228 | if (bestIndex >= 0) {
|
---|
[15713] | 229 | sol[bestIndex] = end[bestIndex];
|
---|
| 230 | fitness = bestFitness;
|
---|
| 231 | evaluation = bestEvaluation;
|
---|
[13861] | 232 | yield return Tuple.Create(sol, fitness);
|
---|
| 233 | } else break;
|
---|
| 234 | }
|
---|
| 235 | }
|
---|
| 236 | }
|
---|
| 237 | }
|
---|