#region License Information /* HeuristicLab * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Drawing; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Encodings.PermutationEncoding; using HeuristicLab.Parameters; using HEAL.Attic; namespace HeuristicLab.Analysis.FitnessLandscape { [Item("PermutationFitnessDistanceCorrelationAnalyzer", "An operator that analyzes the correlation between fitness and distance to the best know solution for permutation encoding")] [StorableType("2021A1AA-FE98-4D42-8730-23C5EA552B21")] public class PermutationFitnessDistanceCorrelationAnalyzer : FitnessDistanceCorrelationAnalyzer, IPermutationOperator { #region Parameters public ScopeTreeLookupParameter PermutationParameter { get { return (ScopeTreeLookupParameter)Parameters["Permutation"]; } } public LookupParameter BestKnownSolution { get { return (LookupParameter)Parameters["BestKnownSolution"]; } } #endregion [StorableConstructor] protected PermutationFitnessDistanceCorrelationAnalyzer(StorableConstructorFlag _) : base(_) { } protected PermutationFitnessDistanceCorrelationAnalyzer(PermutationFitnessDistanceCorrelationAnalyzer original, Cloner cloner) : base(original, cloner) { } public PermutationFitnessDistanceCorrelationAnalyzer() { Parameters.Add(new ScopeTreeLookupParameter("Permutation", "The permutation encoded solution")); Parameters.Add(new LookupParameter("BestKnownSolution", "The best known solution")); } public override IDeepCloneable Clone(Cloner cloner) { return new PermutationFitnessDistanceCorrelationAnalyzer(this, cloner); } private static Point GetEdge(Permutation a, int index) { switch (a.PermutationType) { case PermutationTypes.RelativeDirected: return new Point(a[index], a[(index + 1) % a.Length]); case PermutationTypes.RelativeUndirected: return new Point( Math.Min(a[index], a[(index + 1) % a.Length]), Math.Max(a[index], a[(index + 1) % a.Length])); default: throw new ArgumentException("cannot derive edge from non-relative permutation type"); } } public static double Distance(Permutation a, Permutation b) { if (a.PermutationType != b.PermutationType) throw new ArgumentException( "Cannot calculate distance between different permuatation types: " + a.PermutationType + " and " + b.PermutationType); if (a.PermutationType == PermutationTypes.Absolute) { int nEqual = 0; for (int i = 0; i < Math.Min(a.Length, b.Length); i++) { if (a[i] == b[i]) nEqual++; } return Math.Max(a.Length, b.Length) - nEqual; } else { HashSet edges = new HashSet(); for (int i = 0; i < a.Length; i++) edges.Add(GetEdge(a, i)); int nCommonEdges = 0; for (int i = 0; i < b.Length; i++) { if (edges.Contains(GetEdge(b, i))) nCommonEdges++; } return Math.Max(a.Length, b.Length) - nCommonEdges; } } protected override IEnumerable GetDistancesToBestKnownSolution() { if (PermutationParameter.ActualName == null) return new double[0]; Permutation bestKnownValue = BestKnownSolution.ActualValue; if (bestKnownValue == null) return PermutationParameter.ActualValue.Select(v => 0d); return PermutationParameter.ActualValue.Select(v => Distance(v, bestKnownValue)); } } }