#region License Information /* HeuristicLab * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Operators; using HeuristicLab.Optimization; using HeuristicLab.Optimization.Operators; using HeuristicLab.Parameters; using HeuristicLab.Selection; using HEAL.Attic; namespace HeuristicLab.Analysis.FitnessLandscape { /// /// An operator which represents a local search. /// [Item("LocalAnalysisMainLoop", "An operator which represents the main loop of a best improvement local search (if only a single move is generated in each iteration it is a first improvement local search).")] [StorableType("D1B3518C-6A0A-4123-893E-0D4C89DA056C")] public class LocalAnalysisMainLoop : AlgorithmOperator { #region Parameter properties public ValueLookupParameter RandomParameter { get { return (ValueLookupParameter)Parameters["Random"]; } } public ValueLookupParameter MaximizationParameter { get { return (ValueLookupParameter)Parameters["Maximization"]; } } public ValueLookupParameter BestKnownQualityParameter { get { return (ValueLookupParameter)Parameters["BestKnownQuality"]; } } public LookupParameter QualityParameter { get { return (LookupParameter)Parameters["Quality"]; } } public ValueLookupParameter MaximumIterationsParameter { get { return (ValueLookupParameter)Parameters["MaximumIterations"]; } } public ValueLookupParameter ResultsParameter { get { return (ValueLookupParameter)Parameters["Results"]; } } public ValueLookupParameter MutatorParameter { get { return (ValueLookupParameter)Parameters["Mutator"]; } } public ValueLookupParameter SelectorParameter { get { return (ValueLookupParameter)Parameters["Selector"]; } } public ValueLookupParameter SampleSizeParameter { get { return (ValueLookupParameter)Parameters["SampleSize"]; } } public ValueLookupParameter AnalyzerParameter { get { return (ValueLookupParameter)Parameters["Analyzer"]; } } #endregion [StorableConstructor] protected LocalAnalysisMainLoop(StorableConstructorFlag _) : base(_) { } protected LocalAnalysisMainLoop(LocalAnalysisMainLoop original, Cloner cloner) : base(original, cloner) { } public LocalAnalysisMainLoop() : base() { Initialize(); } public override IDeepCloneable Clone(Cloner cloner) { return new LocalAnalysisMainLoop(this, cloner); } private void Initialize() { #region Create parameters Parameters.Add(new ValueLookupParameter("Random", "A pseudo random number generator.")); Parameters.Add(new ValueLookupParameter("Maximization", "True if the problem is a maximization problem, otherwise false.")); Parameters.Add(new LookupParameter("Quality", "The value which represents the quality of a solution.")); Parameters.Add(new ValueLookupParameter("BestKnownQuality", "The best known quality value found so far.")); Parameters.Add(new ValueLookupParameter("MaximumIterations", "The maximum number of generations which should be processed.")); Parameters.Add(new ValueLookupParameter("Results", "The variable collection where results should be stored.")); Parameters.Add(new ValueLookupParameter("Mutator", "Mutation Operator.")); Parameters.Add(new ValueLookupParameter("Selector", "The operator that selects how to continue.")); Parameters.Add(new ValueLookupParameter("SampleSize", "Number of mutation samples.")); Parameters.Add(new ValueLookupParameter("Analyzer", "The operator used to analyze the solution and moves.")); #endregion #region Create operators VariableCreator variableCreator = new VariableCreator(); SubScopesProcessor subScopesProcessor0 = new SubScopesProcessor(); Assigner bestQualityInitializer = new Assigner(); Placeholder analyzer1 = new Placeholder(); ResultsCollector resultsCollector1 = new ResultsCollector(); LeftSelector leftSelector = new LeftSelector(); SubScopesProcessor mainProcessor = new SubScopesProcessor(); UniformSubScopesProcessor mutationProcessor = new UniformSubScopesProcessor(); Placeholder mutator = new Placeholder(); Placeholder evaluator = new Placeholder(); IntCounter evaluatedMovesCounter = new IntCounter(); Placeholder selector = new Placeholder(); SubScopesProcessor moveMakingProcessor = new SubScopesProcessor(); UniformSubScopesProcessor selectedMoveMakingProcessor = new UniformSubScopesProcessor(); QualityComparator qualityComparator = new QualityComparator(); ConditionalBranch improvesQualityBranch = new ConditionalBranch(); Assigner bestQualityUpdater = new Assigner(); Placeholder analyzer2 = new Placeholder(); RightReducer rightReducer = new RightReducer(); RightReducer rightReducer2 = new RightReducer(); IntCounter iterationsCounter = new IntCounter(); Comparator iterationsComparator = new Comparator(); ResultsCollector resultsCollector2 = new ResultsCollector(); ConditionalBranch iterationsTermination = new ConditionalBranch(); variableCreator.CollectedValues.Add(new ValueParameter("Iterations", new IntValue(0))); variableCreator.CollectedValues.Add(new ValueParameter("BestQuality", new DoubleValue(0))); variableCreator.CollectedValues.Add(new ValueParameter("EvaluatedMoves", new IntValue(0))); bestQualityInitializer.Name = "Initialize BestQuality"; bestQualityInitializer.LeftSideParameter.ActualName = "BestQuality"; bestQualityInitializer.RightSideParameter.ActualName = QualityParameter.ActualName; analyzer1.Name = "Analyzer (placeholder)"; analyzer1.OperatorParameter.ActualName = AnalyzerParameter.Name; resultsCollector1.CopyValue = new BoolValue(false); resultsCollector1.CollectedValues.Add(new LookupParameter("Iterations")); resultsCollector1.CollectedValues.Add(new LookupParameter("Best Quality", null, "BestQuality")); resultsCollector1.CollectedValues.Add(new LookupParameter("Evaluated Moves", null, "EvaluatedMoves")); resultsCollector1.ResultsParameter.ActualName = ResultsParameter.Name; leftSelector.CopySelected = new BoolValue(true); leftSelector.NumberOfSelectedSubScopesParameter.ActualName = SampleSizeParameter.Name; mutationProcessor.Parallel = new BoolValue(true); mutator.Name = "(Mutator)"; mutator.OperatorParameter.ActualName = MutatorParameter.Name; evaluator.Name = "(Evaluator)"; evaluator.OperatorParameter.ActualName = "Evaluator"; evaluatedMovesCounter.Name = "EvaluatedMoves++"; evaluatedMovesCounter.ValueParameter.ActualName = "EvaluatedMoves"; evaluatedMovesCounter.Increment = new IntValue(1); selector.Name = "Selector (placeholder)"; selector.OperatorParameter.ActualName = SelectorParameter.Name; qualityComparator.LeftSideParameter.ActualName = QualityParameter.Name; qualityComparator.RightSideParameter.ActualName = "BestQuality"; qualityComparator.ResultParameter.ActualName = "IsBetter"; improvesQualityBranch.ConditionParameter.ActualName = "IsBetter"; bestQualityUpdater.Name = "Update BestQuality"; bestQualityUpdater.LeftSideParameter.ActualName = "BestQuality"; bestQualityUpdater.RightSideParameter.ActualName = QualityParameter.Name; analyzer2.Name = "Analyzer (placeholder)"; analyzer2.OperatorParameter.ActualName = AnalyzerParameter.Name; iterationsCounter.Name = "Iterations Counter"; iterationsCounter.Increment = new IntValue(1); iterationsCounter.ValueParameter.ActualName = "Iterations"; iterationsComparator.Name = "Iterations >= MaximumIterations"; iterationsComparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual); iterationsComparator.LeftSideParameter.ActualName = "Iterations"; iterationsComparator.RightSideParameter.ActualName = MaximumIterationsParameter.Name; iterationsComparator.ResultParameter.ActualName = "Terminate"; resultsCollector2.CopyValue = new BoolValue(false); resultsCollector2.CollectedValues.Add(new LookupParameter("Evaluated Moves", null, "EvaluatedMoves")); resultsCollector2.ResultsParameter.ActualName = ResultsParameter.Name; iterationsTermination.Name = "Iterations Termination Condition"; iterationsTermination.ConditionParameter.ActualName = "Terminate"; #endregion #region Create operator graph OperatorGraph.InitialOperator = variableCreator; variableCreator.Successor = subScopesProcessor0; subScopesProcessor0.Operators.Add(bestQualityInitializer); subScopesProcessor0.Successor = resultsCollector1; bestQualityInitializer.Successor = analyzer1; analyzer1.Successor = null; resultsCollector1.Successor = leftSelector; leftSelector.Successor = mainProcessor; mainProcessor.Operators.Add(new EmptyOperator()); mainProcessor.Operators.Add(mutationProcessor); mainProcessor.Successor = rightReducer2; mutationProcessor.Operator = mutator; mutationProcessor.Successor = selector; mutator.Successor = evaluator; evaluator.Successor = evaluatedMovesCounter; evaluatedMovesCounter.Successor = null; selector.Successor = moveMakingProcessor; moveMakingProcessor.Operators.Add(new EmptyOperator()); moveMakingProcessor.Operators.Add(selectedMoveMakingProcessor); moveMakingProcessor.Successor = rightReducer; selectedMoveMakingProcessor.Operator = qualityComparator; selectedMoveMakingProcessor.Successor = null; qualityComparator.Successor = improvesQualityBranch; improvesQualityBranch.TrueBranch = bestQualityUpdater; improvesQualityBranch.FalseBranch = null; improvesQualityBranch.Successor = analyzer2; bestQualityUpdater.Successor = null; analyzer2.Successor = null; rightReducer.Successor = null; rightReducer2.Successor = iterationsCounter; iterationsCounter.Successor = iterationsComparator; iterationsComparator.Successor = resultsCollector2; resultsCollector2.Successor = iterationsTermination; iterationsTermination.TrueBranch = null; iterationsTermination.FalseBranch = leftSelector; #endregion } public override IOperation Apply() { return base.Apply(); } } }